ArticleOriginal scientific text
Title
Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators
Authors 1, 1
Affiliations
- Institute of Discrete Mathematics, Austrian Academy of Sciences, Sonnenfelsgasse 19, A-1010 Wien, Austria
Bibliography
- T. Cochrane, On a trigonometric inequality of Vinogradov, J. Number Theory 27 (1987), 9-16.
- J. Eichenauer-Herrmann, Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60 (1993), 375-384.
- P. Hellekalek, General discrepancy estimates: the Walsh function system, Acta Arith. 67 (1994), 209-218.
- R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, revised ed., Cambridge Univ. Press, Cambridge, 1994.
- C. J. Moreno and O. Moreno, Exponential sums and Goppa codes: I, Proc. Amer. Math. Soc. 111 (1991), 523-531.
- H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
- H. Niederreiter, Pseudorandom vector generation by the inversive method, ACM Trans. Modeling and Computer Simulation 4 (1994), 191-212.
- H. Niederreiter, Improved bounds in the multiple-recursive matrix method for pseudorandom number and vector generation, Finite Fields Appl. 2 (1996), 225-240.
- H. Niederreiter and I. E. Shparlinski, On the distribution of inversive congruential pseudorandom numbers in parts of the period, Math. Comp., to appear.
- H. Niederreiter and I. E. Shparlinski, On the distribution and lattice structure of nonlinear congruential pseudorandom numbers, Finite Fields Appl. 5 (1999), 246-253.
- H. Niederreiter and I. E. Shparlinski, On the distribution of pseudorandom numbers and vectors generated by inversive methods, Appl. Algebra Engrg. Comm. Comput., to appear.
- A. Winterhof, On the distribution of powers in finite fields, Finite Fields Appl. 4 (1998), 43-54.