ArticleOriginal scientific text

Title

Incomplete exponential sums over finite fields and their applications to new inversive pseudorandom number generators

Authors 1, 1

Affiliations

  1. Institute of Discrete Mathematics, Austrian Academy of Sciences, Sonnenfelsgasse 19, A-1010 Wien, Austria

Bibliography

  1. T. Cochrane, On a trigonometric inequality of Vinogradov, J. Number Theory 27 (1987), 9-16.
  2. J. Eichenauer-Herrmann, Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60 (1993), 375-384.
  3. P. Hellekalek, General discrepancy estimates: the Walsh function system, Acta Arith. 67 (1994), 209-218.
  4. R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, revised ed., Cambridge Univ. Press, Cambridge, 1994.
  5. C. J. Moreno and O. Moreno, Exponential sums and Goppa codes: I, Proc. Amer. Math. Soc. 111 (1991), 523-531.
  6. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, 1992.
  7. H. Niederreiter, Pseudorandom vector generation by the inversive method, ACM Trans. Modeling and Computer Simulation 4 (1994), 191-212.
  8. H. Niederreiter, Improved bounds in the multiple-recursive matrix method for pseudorandom number and vector generation, Finite Fields Appl. 2 (1996), 225-240.
  9. H. Niederreiter and I. E. Shparlinski, On the distribution of inversive congruential pseudorandom numbers in parts of the period, Math. Comp., to appear.
  10. H. Niederreiter and I. E. Shparlinski, On the distribution and lattice structure of nonlinear congruential pseudorandom numbers, Finite Fields Appl. 5 (1999), 246-253.
  11. H. Niederreiter and I. E. Shparlinski, On the distribution of pseudorandom numbers and vectors generated by inversive methods, Appl. Algebra Engrg. Comm. Comput., to appear.
  12. A. Winterhof, On the distribution of powers in finite fields, Finite Fields Appl. 4 (1998), 43-54.
Pages:
387-399
Main language of publication
English
Received
1999-12-03
Published
2000
Exact and natural sciences