ArticleOriginal scientific text
Title
The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, II
Authors 1
Affiliations
- Department of Mathematics, Princeton University, 607 Fine Hall, Washington Road, Princeton, NJ 08544-1000, U.S.A.
Bibliography
- G. Andrews, The Theory of Partitions, Cambridge Univ. Press, Cambridge, 1998.
- D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), 243-250.
- M. Knopp, On the Fourier coefficients of small positive powers of θ(τ), ibid. 85 (1986), 165-183.
- M. Knopp, On the Fourier coefficients of cusp forms having small positive weight, in: Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 111-127.
- D. Niebur, Automorphic integrals of arbitrary positive dimension and Poincaré series, Doctoral Dissertation, University of Wisconsin, Madison, 1968.
- D. Niebur, Construction of automorphic forms and integrals, Trans. Amer. Math. Soc. 191 (1974), 373-385.
- P. Pasles and W. Pribitkin, A generalization of the Lipschitz summation formula and some applications, to appear.
- W. Pribitkin, The Fourier coefficients of modular forms and modular integrals having small positive weight, Doctoral Dissertation, Temple University, Philadelphia, 1995.
- W. Pribitkin, The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I, Acta Arith. 91 (1999), 291-309.
- H. Rademacher and H. S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. 39 (1938), 433-462.
- W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I, Math. Ann. 167 (1966), 292-337.
- A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1965, 1-15.