ArticleOriginal scientific text

Title

A conditional density theorem for the zeros of the Riemann zeta-function

Authors 1

Affiliations

  1. Dipartimento di Matematica, Università degli Studi di Parma, via Massimo d'Azeglio 85/A, 43100 Parma, Italy

Bibliography

  1. D. Bazzanella and A. Perelli, The exceptional set for the number of primes in short intervals, to appear.
  2. E. Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1974).
  3. D. A. Goldston and H. L. Montgomery, Pair correlation of zeros and primes in short intervals, in: Analytic Number Theory and Diophantine Problems, A. Adolphson et al. (eds.), Birkhäuser, Boston, 1987, 183-203.
  4. M. N. Huxley, On the difference between consecutive primes, Invent. Math. 15 (1972), 164-170.
  5. G. Kolesnik and E. G. Straus, On the sum of powers of complex numbers, in: Studies in Pure Mathematics, To the Memory of P. Turán, P. Erdős (ed.), Birkhäuser, Basel, 1983, 427-442.
  6. B. Saffari and R. C. Vaughan, On the fractional parts of x/n and related sequences. II, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 2, 1-30.
  7. E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, 1986.
  8. P. Turán, On a New Method of Analysis and its Applications, Wiley, New York, 1984.
  9. A. Zaccagnini, Primes in almost all short intervals, Acta Arith. 84 (1998), 225-244.
Pages:
293-301
Main language of publication
English
Received
1999-03-29
Accepted
1999-09-22
Published
2000
Exact and natural sciences