ArticleOriginal scientific text

Title

Estimation of exponential sums of polynomials of higher degrees II

Authors 1

Affiliations

  1. Department of Mathematics, The University of Iowa, Iowa City, IA 52242-1419, U.S.A.

Bibliography

  1. R. Dąbrowski and B. Fisher, A stationary phase formula for exponential sums over pm and applications to GL(3)-Kloosterman sums, Acta Arith. 80 (1997), 1-48.
  2. P. Deligne, Applications de la formule des traces aux sommes trigonométriques, in: Cohomologie Etale (SGA 4 1/2), Lecture Notes in Math. 569, Springer, Berlin, 1977, 168-232.
  3. N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton Univ. Press, Princeton, 1988.
  4. N. M. Katz, Exponential Sums and Differential Equations, Ann. of Math. Stud. 124, Princeton Univ. Press, Princeton, 1990.
  5. J. H. Loxton and R. A. Smith, On Hua's estimate for exponential sums, J. London Math. Soc. 26 (1982), 15-20.
  6. J. H. Loxton and R. C. Vaughan, The estimation of complete exponential sums, Canad. Math. Bull. 28 (1985), 440-454.
  7. R. A. Smith, On n-dimensional Kloosterman sums, J. Number Theory 11 (1979), 324-343.
  8. R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge Univ. Press, Cambridge, 1997.
  9. Y. Ye, The lifting of an exponential sum to a cyclic algebraic number field of a prime degree, Trans. Amer. Math. Soc. 350 (1998), 5003-5015.
  10. Y. Ye, Hyper-Kloosterman sums and estimation of exponential sums of polynomials of higher degrees, Acta Arith. 86 (1998), 255-267.
Pages:
221-235
Main language of publication
English
Received
1998-06-02
Accepted
1999-11-09
Published
2000
Exact and natural sciences