Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2000 | 93 | 1 | 87-97

Tytuł artykułu

Irreducibility of the iterates of a quadratic polynomial over a field

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
1. Introduction. Let K be a field of characteristic p ≥ 0 and let f(X) be a polynomial of degree at least two with coefficients in K. We set f₁(X) = f(X) and define $f_{r+1}(X) = f(f_r(X))$ for all r ≥ 1. Following R. W. K. Odoni [7], we say that f is stable over K if $f_r(X)$ is irreducible over K for every r ≥ 1. In [6] the same author proved that the polynomial f(X) = X² - X + 1 is stable over ℚ. He wrote in [7] that the proof given there is quite difficult and it would be of interest to have an elementary proof. In the sequel we shall use elementary methods for proving the stability of quadratic polynomials over number fields; especially the rational field, and over finite fields of characteristic p ≥ 3.

Czasopismo

Rocznik

Tom

93

Numer

1

Strony

87-97

Daty

wydano
2000
otrzymano
1999-06-11
poprawiono
1999-09-09

Twórcy

autor
  • Université du Littoral Cote d'Opale, 50, Rue Ferdinand Buisson, BP699, 62228 Calais Cedex, France
  • Department of Mathematics, University College Dublin, Belfield 4, Dublin, Ireland

Bibliografia

  • [1] E. Artin and J. Tate, Class Field Theory, Benjamin, New York, 1968.
  • [2] M. Ayad, Théorie de Galois, 122 exercices corrigés, niveau I, Ellipses, Paris, 1997.
  • [3] Z. I. Borevitch et I. R. Chafarevitch, Théorie des nombres, Gauthier-Villars, Paris, 1967.
  • [4] Y. Hellegouarch, Loi de réciprocité, critère de primalité dans $𝔽_q[t]$, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 291-296.
  • [5] P. J. McCarthy, Algebraic Extensions of Fields, Blaisdell, Waltham, 1966.
  • [6] R. W. K. Odoni, On the prime divisors of the sequence $w_n + 1 = 1 + w₁...w_n$, J. London Math. Soc. 32 (1985), 1-11.
  • [7] R. W. K. Odoni, The Galois theory of iterates and composites of polynomials, Proc. London Math. Soc. 51 (1985), 385-414.
  • [8] O. Ore, Contributions to the theory of finite fields, Trans. Amer. Math. Soc. 36 (1934), 243-274.
  • [9] N. G. Tschebotaröw, Grundzüge der Galois'schen theorie (translated from Russian by H. Schwerdtfeger), Noordhoff, Groningen, 1950.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-aav93i1p87bwm