ArticleOriginal scientific text
Title
Algebraic independence of the values of Mahler functions satisfying implicit functional equations
Authors 1
Affiliations
- Lechenicher Str. 18, D-50937 Köln, Germany
Bibliography
- P.-G. Becker, Transcendence of the values of functions satisfying generalized Mahler type functional equations, J. Reine Angew. Math. 440 (1993), 111-128.
- V. G. Chirskiĭ, On the algebraic independence of the values of functions satisfying systems of functional equations, Proc. Steklov Inst. Math. 218 (1997), 433-438.
- J. H. Loxton and A. J. van der Poorten, Transcendence and algebraic independence by a method of Mahler, in: Transcendence Theory - Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, New York, 1977, 211-226.
- K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), 342-366.
- K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z. 32 (1930), 545-585.
- K. Mahler, Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen, Math. Ann. 103 (1930), 573-587.
- K. Mahler, Remarks on a paper by W. Schwarz, J. Number Theory 1 (1969), 512-521.
- K. Nishioka, On a problem of Mahler for transcendency of function values, J. Austral. Math. Soc. Ser. A 33 (1982), 386-393.
- K. Nishioka, On a problem of Mahler for transcendency of function values II, Tsukuba J. Math. 7 (1983), 265-279.
- K. Nishioka, New approach in Mahler's method, J. Reine Angew. Math. 407 (1990), 202-219.
- K. Nishioka, Mahler Functions and Transcendence, Lecture Notes in Math. 1631, Springer, 1996.
- T. Schneider, Einführung in die transzendenten Zahlen, Springer, Berlin, 1957.
- T. Töpfer, An axiomatization of Nesterenko's method and applications on Mahler functions, J. Number Theory 49 (1994), 1-26.
- T. Töpfer, Algebraic independence of the values of generalized Mahler functions, Acta Arith. 70 (1995), 161-181.
- T. Töpfer, Simultaneous approximation measures for functions satisfying generalized functional equations of Mahler type, Abh. Math. Sem. Univ. Hamburg 66 (1996), 177-201.
- M. Waldschmidt, Algebraic independence of transcendental numbers: a survey, in: Proceedings of the Fifth Conference of the Canadian Number Theory Association; Monograph on Number Theory, Indian National Science Academy, R. P. Bambah et al. (eds.), to appear; http://www.math.jussieu.fr/ miw, 1998.
- N. C. Wass, Algebraic independence of the values at algebraic points of a class of functions considered by Mahler, Dissertationes Math. 303 (1990).
- A. Weil, Foundations of Algebraic Geometry, Colloq. Publ. 29, Amer. Math. Soc., 1962