ArticleOriginal scientific text

Title

Inclusion of CM-fields and divisibility ofrelative class numbers

Authors 1

Affiliations

  1. Doshisha University, Department of Mathematics, Faculty of Engineering, Kyotanabe, Kyoto, 610-0321 Japan

Bibliography

  1. S. Arno, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334.
  2. A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1966), 98-102.
  3. A. Baker, Imaginary quadratic fields with class number 2, Ann. of Math. 94 (1971), 139-152.
  4. H. Furuya, On divisibility by 2 of the relative class numbers of imaginary number fields, Tôhoku Math. J. 23 (1971), 207-218.
  5. D. M. Goldfeld, The class number of quadratic fields and the conjectures of Birch and Swinnerton-Dyer, Ann. Scuola Norm. Sup. Pisa (4) 3 (1976), 623-663.
  6. B. Gross et D. Zagier, Points de Heegner et derivées de fonctions L, C. R. Acad. Sci. Paris 297 (1983), 85-87.
  7. K. Győry, Sur une classe des corps de nombres algébriques et ses applications, Publ. Math. Debrecen 22 (1975), 151-175.
  8. K. Heegner, Diophantische Analysis und Modulfunktionen, Math. Z. 56 (1952), 227-253.
  9. H. Heilbronn, On real zeros of Dedekind ζ-functions, Canad. J. Math. 25 (1973), 870-873.
  10. M. Hirabayashi and K. Yoshino, Remarks on unit indices of imaginary abelian number fields II, Manuscripta Math. 64 (1989), 235-251.
  11. J. Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), 37-47.
  12. K. Horie, On a ratio between relative class numbers, Math. Z. 211 (1992), 505-521.
  13. K. Horie, On CM-fields with the same maximal real subfield, Acta Arith. 67 (1994), 219-227.
  14. D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp. 24 (1970), 433-451.
  15. F. Lemmermeyer, Kuroda's class number formula, Acta Arith. 66 (1994), 245-260.
  16. F. Lemmermeyer, Ideal class groups of cyclotomic number fields I, ibid. 72 (1995), 347-359.
  17. F. Lemmermeyer, On 2-class field towers of some imaginary quadratic number fields, Abh. Math. Sem. Univ. Hamburg 67 (1997), 205-214.
  18. M. E. Low, Real zeros of the Dedekind zeta function of an imaginary quadratic field, Acta Arith. 14 (1968), 117-140.
  19. H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, ibid. 24 (1974), 529-542.
  20. P. Roquette, On class field towers, in: Algebraic Number Theory, J. W. S. Cassels and A. Fröhlich (eds.), Academic Press, London, 1967, 231-249.
  21. G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Univ. Press, Princeton, 1997.
  22. G. Shimura and Y. Taniyama, Complex Multiplication of Abelian Varieties, The Mathematical Society of Japan, 1961.
  23. H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J. 14 (1967), 1-27.
  24. H. M. Stark, On complex quadratic fields with class number two, Math. Comp. 29 (1975), 289-302.
  25. H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152.
  26. T. Takagi, Über eine Theorie des relativ Abel'schen Zahlkörpers, in: T. Takagi, Collected Papers, Springer, Tokyo, 1990, 73-167.
  27. L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982, 2nd ed., 1991.
  28. E. E. Whitaker, A determination of the imaginary quadratic number fields with Klein-four group as class group, thesis, 1972.
Pages:
319-338
Main language of publication
English
Received
1998-06-03
Accepted
1999-05-17
Published
2000
Exact and natural sciences