ArticleOriginal scientific text
Title
A Schinzel theorem on continued fractions in function fields
Authors 1
Affiliations
- The Fundamental Science Department, Nanjing Agriculture College, Nanjing 210038, China
Keywords
continued fraction, function field
Bibliography
- E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I, II, Math. Z. 19 (1924), 154-246.
- A. Farhane, Minoration de la période du développement de √(a²n²+bn+c) en fraction continue, Acta Arith. 67 (1994), 63-67.
- C. D. González, Class number of quadratic function fields and continued fractions, J. Number Theory 40 (1992), 38-59.
- D. Hayes, Real quadratic function fields, in: CMS Conf. Proc. 7, Amer. Math. Soc., 1987, 203-236.
- L. K. Hua, Introduction to Number Theory, Springer, 1982.
- S. Louboutin, Une version effective d'un théorème de A. Schinzel sur longueurs des périodes de certains développements en fractions continues, C. R. Acad. Sci. Paris Sér. I 308 (1989), 511-513.
- B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France Mém. 21 (1970).
- A. Schinzel, On some problems of the arithmetical theory of continued fractions, Acta Arith. 6 (1961), 393-413.