ArticleOriginal scientific text

Title

A Schinzel theorem on continued fractions in function fields

Authors 1

Affiliations

  1. The Fundamental Science Department, Nanjing Agriculture College, Nanjing 210038, China

Keywords

continued fraction, function field

Bibliography

  1. E. Artin, Quadratische Körper im Gebiet der höheren Kongruenzen I, II, Math. Z. 19 (1924), 154-246.
  2. A. Farhane, Minoration de la période du développement de √(a²n²+bn+c) en fraction continue, Acta Arith. 67 (1994), 63-67.
  3. C. D. González, Class number of quadratic function fields and continued fractions, J. Number Theory 40 (1992), 38-59.
  4. D. Hayes, Real quadratic function fields, in: CMS Conf. Proc. 7, Amer. Math. Soc., 1987, 203-236.
  5. L. K. Hua, Introduction to Number Theory, Springer, 1982.
  6. S. Louboutin, Une version effective d'un théorème de A. Schinzel sur longueurs des périodes de certains développements en fractions continues, C. R. Acad. Sci. Paris Sér. I 308 (1989), 511-513.
  7. B. de Mathan, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France Mém. 21 (1970).
  8. A. Schinzel, On some problems of the arithmetical theory of continued fractions, Acta Arith. 6 (1961), 393-413.
Pages:
291-302
Main language of publication
English
Received
1997-05-22
Accepted
1999-04-12
Published
2000
Exact and natural sciences