ArticleOriginal scientific text

Title

Estimates for complete multiple exponential sums

Authors 1

Affiliations

  1. Macquarie University, Sydney, NSW 2109, Australia

Bibliography

  1. G. I. Arkhipov, A. A. Karatsuba and V. N. Chubarikov, Theory of Multiple Exponential Sums, Moscow, 1987 (in Russian).
  2. K. A. Atan and J. H. Loxton, Newton polyhedra and solutions of congruences, in: Diophantine Analysis, J. H. Loxton and A. J. van der Poorten (eds.), London Math. Soc. Lecture Note Ser. 109, Cambridge, 1986, 67-82.
  3. V. N. Chubarikov, Multiple rational trigonometric sums and multiple integrals, Mat. Zametki 20 (1976), 61-68 (in Russian); English transl.: Math. Notes 20 (1976).
  4. P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307.
  5. G. H. Hardy and J. E. Littlewood, A new solution of Waring's problem, Quart. J. Math. 48 (1919), 272-293.
  6. S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, London Math. Soc. Lecture Note Ser. 126, Cambridge, 1991.
  7. W. K. A. Loh, Exponential sums on reduced residue systems, Canad. Math. Bull. 41 (1997), 187-195.
  8. J. H. Loxton and R. A. Smith, Estimates for multiple exponential sums, J. Austral. Math. Soc. 33 (1982), 125-134.
  9. J. H. Loxton and R. C. Vaughan, The estimation of complete exponential sums, Canad. Math. Bull. 28 (1985), 440-454.
  10. E. C. Titchmarsh, On Epstein's zeta function, Proc. London Math. Soc. (2) 36 (1934), 485-500.
  11. R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Tracts in Math. 80, Cambridge, 1981.
  12. H. Weyl, Über die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352.
Pages:
277-290
Main language of publication
English
Received
1995-10-17
Accepted
1999-05-25
Published
2000
Exact and natural sciences