ArticleOriginal scientific text

Title

An inverse theorem mod p

Authors 1, 2

Affiliations

  1. E. Combinatoire, Université P. et M. Curie, 4 Place Jussieu, 75005 Paris, France
  2. Department of Mathematics, University of Bergen, Johs. Brunsgt. 12, N-5008 Bergen, Norway

Bibliography

  1. A. L. Cauchy, Recherches sur les nombres, J. École Polytech. 9 (1813), 99-116.
  2. S. Chowla, H. B. Mann, and E. G. Straus, Some applications of the Cauchy-Davenport theorem, Norske Vid. Selsk. Forh. 32 (1959), 74-80.
  3. H. Davenport, On the addition of residue classes, J. London Math. Soc. 10 (1935), 30-32.
  4. H. Davenport, A historical note, ibid. 22 (1947), 100-101.
  5. G. A. Freiman, Inverse problems of additive number theory. On the addition of sets of residues with respect to a prime modulus, Dokl. Akad. Nauk SSSR 141 (1961), 571-573 (in Russian).
  6. G. A. Freiman, Inverse problems of additive number theory. On the addition of sets of residues with respect to a prime modulus, Soviet Math. Dokl. 2 (1961), 1520-1522.
  7. H. B. Mann, Addition Theorems: The Addition Theorems of Group Theory and Number Theory, Interscience Publ., New York, 1965.
  8. M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, New York, 1996.
  9. A. G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31 (1956), 200-205.
  10. A. G. Vosper, Addendum to 'The critical pairs of subsets of a group of prime order', ibid. 31 (1956), 280-282.
Pages:
251-262
Main language of publication
English
Received
1999-04-16
Accepted
1999-09-30
Published
2000
Exact and natural sciences