ArticleOriginal scientific text
Title
The Siegel-Walfisz theorem for Rankin-Selberg L-functions associated with two cusp forms
Authors 1
Affiliations
- Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
Bibliography
- E. Carletti, G. Monti Bragadin and A. Perelli, On general L-functions, Acta Arith. 66 (1994), 147-179.
- H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980.
- P. Deligne, La conjecture de Weil I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273-307.
- D. N. Goldfeld, A simple proof of Siegel's theorem, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 1055.
- E. P. Golubeva and O. M. Fomenko, Values of Dirichlet series associated with modular forms at the points s=1/2, 1, J. Soviet Math. 36 (1987), 79-93.
- J. L. Hafner, On the representation of the summatory functions of a class of arithmetical functions, in: Lecture Notes in Math. 899, Springer, 1981, 148-165.
- J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. 140 (1994), 161-181.
- J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Internat. Math. Res. Notices (1995), 279-308.
- W. Li, L-series of Rankin type and their functional equations, Math. Ann. 244 (1979), 135-166.
- Ju. I. Manin and A. A. Pančiškin, Convolutions of Hecke series and their values at lattice points, Math. USSR-Sb. 33 (1977), 539-571.
- A. P. Ogg, On a convolution of L-series, Invent. Math. 7 (1969), 297-312.
- A. Perelli, General L-functions, Ann. Mat. Pura Appl. 130 (1982), 287-306.
- A. Perelli, On the prime number theorem for the coefficients of certain modular forms, in: Banach Center Publ. 17, PWN-Polish Sci. Publ., Warszawa, 1985, 405-410.
- A. Perelli and G. Puglisi, Real zeros of general L-functions, Rend. Accad. Naz. Lincei (8) 70 (1982), 67-74.
- C. L. Siegel, Advanced Analytic Number Theory, Tata Inst. Fund. Res., Bombay, 1980.