ArticleOriginal scientific text

Title

Transcendence measure for η/ω

Authors 1

Affiliations

  1. School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

Bibliography

  1. G. Diaz et M. Mignotte, Passage d'une mesure d'approximation à une de transcendance, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 4, 131-134.
  2. L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1952.
  3. A. O. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, 1960.
  4. M. Hall, Jr., Combinatorial Theory, 2nd ed., Wiley, 1986.
  5. S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, MA, 1966.
  6. S. Lang, Elliptic Functions, Addison-Wesley, Reading, MA, 1973.
  7. K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Austral. Math. Soc. Ser. A 10 (1969), 445-450.
  8. Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65-96 (in Russian); English transl.: Math. USSR-sb. 187 (1996), 1319-1348.
  9. E. Reyssat, Mesures de transcendance de nombres liés aux fonctions exponentielles et elliptiques, C. R. Acad. Sci. Paris Sér. A 285 (1977), 977-980.
  10. E. Reyssat, Approximation algébrique de nombres liés aux fonctions elliptiques et exponentielles, Bull. Soc. Math. France 108 (1980), 47-79.
  11. T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann. 113 (1937), 1-13.
  12. A. B. Shidlovski, Transcendental Numbers, Nauka, Moscow, 1987 (in Russian); English transl.: de Gruyter, Berlin, 1989.
  13. M. Waldschmidt, Transcendence measures of exponentials and logarithms of algebraic numbers, J. Austral. Math. Soc. Ser. A 25 (1978), 445-465.
Pages:
11-25
Main language of publication
English
Received
1998-02-22
Accepted
1999-09-06
Published
2000
Exact and natural sciences