Download PDF - Transcendence measure for η/ω
ArticleOriginal scientific text
Title
Transcendence measure for η/ω
Authors 1
Affiliations
- School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
Bibliography
- G. Diaz et M. Mignotte, Passage d'une mesure d'approximation à une de transcendance, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), no. 4, 131-134.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1952.
- A. O. Gelfond, Transcendental and Algebraic Numbers, Dover, New York, 1960.
- M. Hall, Jr., Combinatorial Theory, 2nd ed., Wiley, 1986.
- S. Lang, Introduction to Transcendental Numbers, Addison-Wesley, Reading, MA, 1966.
- S. Lang, Elliptic Functions, Addison-Wesley, Reading, MA, 1973.
- K. Mahler, On algebraic differential equations satisfied by automorphic functions, J. Austral. Math. Soc. Ser. A 10 (1969), 445-450.
- Yu. V. Nesterenko, Modular functions and transcendence questions, Mat. Sb. 187 (1996), no. 9, 65-96 (in Russian); English transl.: Math. USSR-sb. 187 (1996), 1319-1348.
- E. Reyssat, Mesures de transcendance de nombres liés aux fonctions exponentielles et elliptiques, C. R. Acad. Sci. Paris Sér. A 285 (1977), 977-980.
- E. Reyssat, Approximation algébrique de nombres liés aux fonctions elliptiques et exponentielles, Bull. Soc. Math. France 108 (1980), 47-79.
- T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann. 113 (1937), 1-13.
- A. B. Shidlovski, Transcendental Numbers, Nauka, Moscow, 1987 (in Russian); English transl.: de Gruyter, Berlin, 1989.
- M. Waldschmidt, Transcendence measures of exponentials and logarithms of algebraic numbers, J. Austral. Math. Soc. Ser. A 25 (1978), 445-465.