ArticleOriginal scientific text

Title

On intervals containing full sets of conjugates of algebraic integers

Authors 1

Affiliations

  1. Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, 2600 Vilnius, Lithuania

Bibliography

  1. [Du] A. Dubickas, On the maximal conjugate of a totally real algebraic integer, Lithuanian Math. J. 37 (1997), 13-19.
  2. [En] V. Ennola, Conjugate algebraic integers in an interval, Proc. Amer. Math. Soc. 53 (1975), 259-261.
  3. [Kr] L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857), 173-175.
  4. [La] M. Langevin, Solution des problèmes de Favard, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 2, 1-10.
  5. [Le] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461-479.
  6. [Lo] R. Louboutin, Sur la mesure de Mahler d'un nombre algébrique, C. R. Acad. Sci. Paris 296 (1983), 707-708.
  7. [Ro] R. M. Robinson, Intervals containing infinitely many sets of conjugate algebraic integers, in: Studies in Mathematical Analysis and Related Topics, Stanford Univ. Press, 1962, 305-315.
  8. [SZ] A. Schinzel and H. Zassenhaus, A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965), 81-85.
  9. [Sc] I. Schur, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 1 (1918), 377-402.
  10. [Za] T. Zaïmi, Minoration du diamètre d'un entier algébrique totalement réel, C. R. Acad. Sci. Paris 319 (1994), 417-419.
Pages:
379-386
Main language of publication
English
Received
1999-03-16
Accepted
1999-06-17
Published
1999
Exact and natural sciences