ArticleOriginal scientific text
Title
Chen's theorem in short intervals
Authors 1, 1
Affiliations
- Department of Mathematics, Shanghai University, Shanghai 201800, P.R. China
Bibliography
- J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao (Chinese) 17 (1966), 385-386.
- J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176; II, Sci. Sinica 21 (1978), 477-494 (in Chinese).
- H. Iwaniec, Rosser's sieve, in: Recent Progress in Analytic Number Theory II, Academic Press, 1981, 203-230.
- C. H. Jia, Almost all short intervals containing prime numbers, Acta Arith. 76 (1996), 21-84.
- Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Peking, 1981 (in Chinese).
- S. Salerno and A. Vitolo, p+2 = P₂ in short intervals, Note Mat. 13 (1993), 309-328.
- J. Wu, Théorèmes generalisées de Bombieri-Vinogradov dans les petits intervalles, Quart. J. Math. (Oxford) 44 (1993), 109-128.
- J. Wu, Sur l'équation p+2 = P₂ dans les petits intervalles, J. London Math. Soc. (2) 49 (1994), 61-72.