ArticleOriginal scientific text

Title

Chen's theorem in short intervals

Authors 1, 1

Affiliations

  1. Department of Mathematics, Shanghai University, Shanghai 201800, P.R. China

Bibliography

  1. J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Kexue Tongbao (Chinese) 17 (1966), 385-386.
  2. J. R. Chen, On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176; II, Sci. Sinica 21 (1978), 477-494 (in Chinese).
  3. H. Iwaniec, Rosser's sieve, in: Recent Progress in Analytic Number Theory II, Academic Press, 1981, 203-230.
  4. C. H. Jia, Almost all short intervals containing prime numbers, Acta Arith. 76 (1996), 21-84.
  5. Chengdong Pan and Chengbiao Pan, Goldbach Conjecture, Science Press, Peking, 1981 (in Chinese).
  6. S. Salerno and A. Vitolo, p+2 = P₂ in short intervals, Note Mat. 13 (1993), 309-328.
  7. J. Wu, Théorèmes generalisées de Bombieri-Vinogradov dans les petits intervalles, Quart. J. Math. (Oxford) 44 (1993), 109-128.
  8. J. Wu, Sur l'équation p+2 = P₂ dans les petits intervalles, J. London Math. Soc. (2) 49 (1994), 61-72.
Pages:
311-323
Main language of publication
English
Received
1998-04-08
Accepted
1999-04-06
Published
1999
Exact and natural sciences