ArticleOriginal scientific text

Title

The Fourier coefficients of modular forms and Niebur modular integrals having small positive weight, I

Authors 1

Affiliations

  1. Department of Mathematics and Natural Sciences, Centenary College, Hackettstown, NJ 07840, U.S.A.

Bibliography

  1. D. Goldfeld and P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), 243-250.
  2. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, 5th ed., Academic Press, New York, 1994.
  3. M. Knopp, Fourier series of automorphic forms of nonnegative dimension, Illinois J. Math. 5 (1961), 18-42.
  4. M. Knopp, Automorphic forms of nonnegative dimension and exponential sums, Michigan Math. J. 7 (1960), 257-287.
  5. M. Knopp, On the Fourier coefficients of small positive powers of θ(τ), Invent. Math. 85 (1986), 165-183.
  6. M. Knopp, On the Fourier coefficients of cusp forms having small positive weight, in: Proc. Sympos. Pure Math. 49, Part 2, Amer. Math. Soc., Providence, RI, 1989, 111-127.
  7. M. Knopp, Modular Functions in Analytic Number Theory, Chelsea, New York, 1993.
  8. J. Lehner, Discontinuous Groups and Automorphic Functions, Amer. Math. Soc., Providence, RI, 1964.
  9. D. Niebur, Automorphic integrals of arbitrary positive dimension and Poincaré series, Doctoral Dissertation, University of Wisconsin, Madison, 1968.
  10. D. Niebur, Construction of automorphic forms and integrals, Trans. Amer. Math. Soc. 191 (1974), 373-385.
  11. H. Petersson, Theorie der automorphen Formen beliebiger reeller Dimension und ihre Darstellung durch eine neue Art Poincaréscher Reihen, Math. Ann. 103 (1930), 369-436.
  12. H. Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math. 58 (1932), 169-215.
  13. H. Petersson, Automorphe Formen als metrische Invarianten, Math. Nachr. 1 (1948), 158-212.
  14. W. Pribitkin, The Fourier coefficients of modular forms and modular integrals having small positive weight, Doctoral Dissertation, Temple University, Philadelphia, 1995.
  15. H. Rademacher, The Fourier coefficients of the modular invariant J(τ), Amer. J. Math. 60 (1938), 501-512.
  16. H. Rademacher, The Fourier series and the functional equation of the absolute modular invariant J(τ), ibid. 61 (1939), 237-248.
  17. H. Rademacher, Correction, ibid. 64 (1942), 456.
  18. H. Rademacher and H. S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. 39 (1938), 433-462.
  19. W. Roelcke, Das Eigentwertproblem der automorphen Formen in der hyperbolischen Ebene I, Math. Ann. 167 (1966), 292-337.
  20. A. Selberg, On the estimation of Fourier coefficients of modular forms, in: Theory of Numbers, Proc. Sympos. Pure Math. 8, Amer. Math. Soc., Providence, RI, 1965, 1-15.
Pages:
291-309
Main language of publication
English
Received
1997-08-19
Accepted
1998-07-21
Published
1999
Exact and natural sciences