ArticleOriginal scientific text
Title
On sums and differences of two coprime kth powers
Authors 1
Affiliations
- Department of Mathematics, Shandong Normal University, Jinan, 250014, Shandong, P.R. China
Bibliography
- R. C. Baker, The square-free divisor problem, Quart. J. Math. Oxford Ser. 45 (1994), 269-277.
- E. Fouvry and H. Iwaniec, Exponential sums for monomials, J. Number Theory 33 (1989), 311-333.
- M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
- A. Ivić, The Riemann Zeta-function, Wiley, 1985.
- E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.
- E. Krätzel, Primitive lattice points in special plane domains and a related three-dimensional lattice point problem I, Forschungsergebnisse, FSU, Jena, N/87/11, 1987.
- H. L. Montgomery and R. C. Vaughan, The distribution of squarefree numbers, in: Recent Progress in Analytic Number Theory (Durham, 1979), Vol. 1, Academic Press, London, 1981, 247-256.
- B. Z. Moroz, On the number of primitive lattice points in plain domains, Monatsh. Math. 99 (1985), 37-43.
- W. Müller and W. G. Nowak, Lattice points in planar domains: applications of Huxley's 'discrete Hardy-Littlewood method', in: Number-Theoretic Analysis (Vienna, 1988-89), Lecture Notes in Math. 1452, Springer, 1990, 139-164.
- W. Müller and W. G. Nowak, On a mean-value theorem concerning differences of two k-th powers, Tsukuba J. Math. 13 (1989), 23-29.
- W. G. Nowak, On sums of two coprime k-th powers, Monatsh. Math. 108 (1989), 47-57.
- W. G. Nowak, On sums and differences of two relative prime cubes, Analysis 15 (1995), 325-341.
- W. G. Nowak, Primitive lattice points in starlike planar sets, Pacific J. Math. 170 (1997), 163-178.
- W. G. Nowak, On sums of two k-th powers: a mean-square bound for the error term, Analysis 16 (1996), 297-304.
- W. G. Nowak, On sums and differences of two relative prime cubes II, Tatra Mt. Math. Publ. 11 (1997) (Proc. Czech and Slovak Number Theory Conference, 1995), 23-34.
- W. G. Nowak, On differences of two k-th powers of integers, Ramanujan J. 2 (1998), 421-440.
- J. D. Vaaler, Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc. 12 (1985), 183-216.