ArticleOriginal scientific text

Title

Effective solution of families of Thue equations containing several parameters

Authors 1, 1

Affiliations

  1. Institut für Mathematik, Technische Universität Graz, Steyrergasse 30, A-8010 Graz, Austria

Bibliography

  1. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
  2. Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392.
  3. Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), 273-292.
  4. J. H. Chen and P. M. Voutier, Complete solution of the Diophantine equation X2+1=dY4 and a related family of quartic Thue equations, J. Number Theory 62 (1997), 71-99.
  5. I. Gaál, On the resolution of some Diophantine equations, in: Computational Number Theory, A. Pethő, M. Pohst, H. C. Williams and H. G. Zimmer (eds.), de Gruyter, Berlin, 1991, 261-280.
  6. I. Gaál and G. Lettl, A parametric family of quintic Thue equations, Math. Comp., to appear.
  7. F. Halter-Koch, G. Lettl, A. Pethő and R. F. Tichy, Thue equations associated with Ankeny-Brauer-Chowla number fields, J. London Math. Soc., to appear.
  8. C. Heuberger, On families of parametrized Thue equations, J. Number Theory 76 (1999), 45-61.
  9. C. Heuberger, On a family of quintic Thue equations, J. Symbolic Comput. 26 (1998), 173-185.
  10. C. Heuberger, A. Pethő and R. F. Tichy, Complete solution of parametrized Thue equations, Acta Math. Inform. Univ. Ostraviensis 6 (1998), 93-113.
  11. S. Lang, Elliptic Curves: Diophantine Analysis, Grundlehren Math. Wiss. 23, Springer, Berlin, 1978.
  12. E. Lee, Studies on Diophantine equations, Ph.D. thesis, Cambridge Univ., 1992.
  13. G. Lettl and A. Pethő, Complete solution of a family of quartic Thue equations, Abh. Math. Sem. Univ. Hamburg 65 (1995), 365-383.
  14. G. Lettl, A. Pethő and P. Voutier, Simple families of Thue inequalities, Trans. Amer. Math. Soc. 351 (1999), 1871-1894.
  15. G. Lettl, A. Pethő and P. Voutier, On the arithmetic of simplest sextic fields and related Thue equations, in: Number Theory, Diophantine, Computational and Algebraic Aspects (Eger, 1996), K. Győry, A. Pethő and V. T. Sós (eds.), de Gruyter, Berlin, 1998, 331-348.
  16. M. Mignotte, Verification of a conjecture of E. Thomas, J. Number Theory 44 (1993), 172-177.
  17. M. Mignotte, A. Pethő and F. Lemmermeyer, On the family of Thue equations x3-(n-1)x2y-(n+2)xy2-y3=k, Acta Arith. 76 (1996), 245-269.
  18. M. Mignotte, A. Pethő and R. Roth, Complete solutions of quartic Thue and index form equations, Math. Comp. 65 (1996), 341-354.
  19. M. Mignotte and N. Tzanakis, On a family of cubics, J. Number Theory 39 (1991), 41-49.
  20. A. Pethő, Complete solutions to families of quartic Thue equations, Math. Comp. 57 (1991), 777-798.
  21. A. Pethő and R. F. Tichy, On two-parametric quartic families of Diophantine problems, J. Symbolic Comput. 26 (1998), 151-171.
  22. M. Pohst, Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory 9 (1977), 459-492.
  23. M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, Cambridge, 1989.
  24. I. Schur, Aufgabe 226, Arch. Math. Physik 13 (1908), 367.
  25. E. Thomas, Complete solutions to a family of cubic Diophantine equations, J. Number Theory 34 (1990), 235-250.
  26. E. Thomas, Solutions to certain families of Thue equations, ibid. 43 (1993), 319-369.
  27. A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.
  28. I. Wakabayashi, On a family of quartic Thue inequalities I, J. Number Theory 66 (1997), 70-84.
  29. M. Waldschmidt, Minoration de combinaisons linéaires de logarithmes de nombres algébriques, Canad. J. Math. 45 (1993), 176-224.
Pages:
147-163
Main language of publication
English
Received
1998-11-13
Accepted
1999-04-13
Published
1999
Exact and natural sciences