ArticleOriginal scientific text

Title

Some families of finite groups and their rings of invariants

Authors 1

Affiliations

  1. Mathematisches Institut II der Universität, D-76128 Karlsruhe, Germany

Bibliography

  1. A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer, Berlin, 1994.
  2. L. E. Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 75-98.
  3. L. E. Dickson, On invariants and the theory of numbers, The Madison Colloquium, 1913; repr. Dover, 1966.
  4. J.; F. Grunewald and J. Mennicke, Groups Acting on Hyperbolic Space, Springer, Berlin, 1997.
  5. F. Grunewald and D. Segal, On congruence topologies in number fields, J. Reine Angew. Math. 311/312 (1979), 389-396.
  6. K. Haberland, Perioden für Modulformen einer Variablen und Gruppencohomologie I, II, III, Math. Nachr. 112 (1983), 245-315.
  7. E. Hecke, Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112 (1936), 664-699; also in: Mathematische Werke, Göttingen, 1959, 591-626.
  8. M. Hochster and J. A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020-1058.
  9. G. Kemper, Calculating invariant rings of finite groups over arbitrary fields, J. Symbolic Comput. 21 (1996), 351-366.
  10. S. Kühnlein, Kohomologie spezieller S-arithmetischer Gruppen und Modulformen, Bonner Math. Schriften 264 (1994).
  11. S. Kühnlein, Torsion classes in cohomology and Galois representations, J. Number Theory 70 (1998), 184-190.
  12. S. Lang, Algebraic Number Theory, Springer, Berlin, 1993.
  13. P. D. Lax and R. S. Phillips, Scattering Theory for Automorphic Functions, Ann. of Math. Stud. 87, Princeton Univ. Press, 1976.
  14. P. Moree and P. Stevenhagen, Prime divisors of Lucas sequences, Acta Arith. 82 (1997), 403-410.
  15. D. Rosen, An arithmetic characterization of the parabolic points of G(2cosπ/5), Glasgow Math. J. 6 (1963), 88-96.
  16. B. J. Schmid, Finite groups and invariant theory, in: Séminaire d'Algèbre, P. Dubriel et M. P. Malliavin (eds.), Lecture Notes in Math. 1478, Springer, 1991, 35-66.
  17. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1994.
  18. L. Smith, Polynomial invariants of finite groups. A survey of recent developments, Bull. Amer. Math. Soc. 34 (1997), 211-250.
  19. T. Springer, Invariant Theory, Lecture Notes in Math. 585, Springer, Heidelberg, 1977.
  20. R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.) 1 (1979), 475-511.
  21. L. C. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1997.
  22. C. Wilkerson, A primer on Dickson invariants, Contemp. Math. 19 (1983), 421-434.
  23. D. Zagier, Zetafunktionen und quadratische Zahlkörper, Springer, Berlin, 1981.
Pages:
133-146
Main language of publication
English
Received
1998-09-22
Accepted
1999-02-03
Published
1999
Exact and natural sciences