ArticleOriginal scientific text

Title

On the quotient sequence of sequences of integers

Authors 1, 1, 2

Affiliations

  1. Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
  2. Department of Algebra and Number Theory, Eötvös University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Bibliography

  1. R. Ahlswede and L. H. Khachatrian, Classical results on primitive and recent results on cross-primitive sequences, in: The Mathematics of Paul Erdős, Vol. I, R. L. Graham and J. Nešetřil (eds.), Algorithms Combin. 13, Springer, 1997, 104-116.
  2. F. Behrend, On sequences of numbers not divisible by one another, J. London Math. Soc. 10 (1935), 42-44.
  3. H. Davenport and P. Erdős, On sequences of positive integers, Acta Arith. 2 (1936), 147-151.
  4. P. Erdős, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. 10 (1935), 126-128.
  5. P. Erdős, A generalization of a theorem of Besicovitch, J. London Math. Soc. 11 (1936), 92-98.
  6. P. Erdős, On the distribution of additive functions, Ann. of Math. 97 (1946), 1-20.
  7. P. Erdős, A. Sárközy and E. Szemerédi, On the divisibility properties of sequences of integers I, Acta Arith. 11 (1966), 411-418.
  8. P. Erdős, A. Sárközy and E. Szemerédi, On divisibility properties of sequences of integers, in: Colloq. Math. Soc. János Bolyai 2, 1970, 35-49.
  9. H. Halberstam and K. F. Roth, Sequences, Springer, Berlin, 1983.
  10. G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Quart. J. Math. 48 (1920), 76-92.
  11. J. Kubilius, Probabilistic Methods in the Theory of Numbers, Amer. Math. Soc. Transl. Math. Monographs 11, Providence, 1964.
  12. C. Pomerance and A. Sárközy, On homogeneous multiplicative hybrid problems in number theory, Acta Arith. 49 (1988), 291-302.
  13. A. Sárközy, On divisibility properties of sequences of integers, in: The Mathematics of Paul Erdős, Vol. I, R. L. Graham and J. Nešetřil (eds.), Algorithms Combin. 13, Springer, 1997, 241-250.
  14. L. G. Sathe, On a problem of Hardy on the distribution of integers having given number of prime factors, J. Indian Math. Soc. 17 (1953), 63-141; and 18 (1954), 27-81.
  15. A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83-87.
Pages:
117-132
Main language of publication
English
Received
1998-09-18
Accepted
1999-05-24
Published
1999
Exact and natural sciences