Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
85-93
Opis fizyczny
Daty
wydano
1999
otrzymano
1998-09-21
poprawiono
1999-05-07
Twórcy
autor
- Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P.R. China
Bibliografia
- [1] Z. F. Cao, On the Diophantine equation $a^x + b^y = c^z$, I, Chinese Sci. Bull. 32 (1987), 1519-1521; II, ibid. 33 (1988), 237 (in Chinese).
- [2] Z. F. Cao, On the Diophantine equation $ax^2 + by^2 = p^z$, J. Harbin Inst. Tech. 23 (1991), 108-111.
- [3] Z. F. Cao, Divisibility of the class numbers of imaginary quadratic fields, Acta Math. Sinica 37 (1994), 50-56 (in Chinese).
- [4] Z. F. Cao, On Jeśmanowicz' conjecture, Res. Rep. Harbin Inst. Tech. 253 (1982), 1-14.
- [5] Z. F. Cao, Introduction to Diophantine equations, Harbin Inst. Tech. Press, 1989 (in Chinese).
- [6] Y. D. Guo and M. H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Comment. Math. Univ. St. Paul. 44 (1995), 225-228.
- [7] T. Hadano, On the Diophantine equation $a^x = b^y + c^z$, Math. J. Okayama Univ. 19 (1976/77), 25-29.
- [8] M. H. Le, On Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97-98.
- [9] M. H. Le, A note on Jeśmanowicz' conjecture, Colloq. Math. 69 (1995), 47-51.
- [10] R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983.
- [11] A. Mąkowski, On the diophantine equation $2^x + 11^y = 5^z$, Nord. Mat. Tidskr. 7 (1959), 81-96.
- [12] L. J. Mordell, Diophantine Equations, Academic Press, 1969.
- [13] T. Nagell, Sur une classe d'équations exponentielles, Ark. Mat. 3 (1958), 569-582.
- [14] M. Perisastri, A note on the equation $a^x - b^y = 10^z$, Math. Student 37 (1969), 211-212.
- [15] R. Scott, On the equations $p^x - b^y = c$ and $a^x + b^y = c^z$, J. Number Theory 44 (1993), 153-165.
- [16] Q. Sun and X. M. Zhou, On the Diophantine equation $a^x+b^y=c^z$, Chinese Sci. Bull. 29 (1984), 61 (in Chinese).
- [17] K. Takakuwa, On a conjecture on Pythagorean numbers, III, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 9, 345-349.
- [18] K. Takakuwa and Y. Asaeda, On a conjecture on Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 7, 252-255.
- [19] K. Takakuwa and Y. Asaeda, On a conjecture on Pythagorean numbers, II, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 8, 287-290.
- [20] N. Terai, The Diophantine equation $a^x + b^y = c^z$, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 22-26.
- [21] N. Terai, The Diophantine equation $a^x + b^y = c^z$, II, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), 109-110.
- [22] N. Terai, The Diophantine equation $a^x + b^y = c^z$, III, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 20-22.
- [23] S. Uchiyama, On the Diophantine equation $2^x = 3^y + 13^z$, Math. J. Okayama Univ. 19 (1976/77), 31-38.
- [24] X. Z. Yang, On the Diophantine equation $a^x + b^y = c^z$, Sichuan Daxue Xuebao 4 (1985), 151-158 (in Chinese).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav91i1p85bwm