ArticleOriginal scientific text

Title

Periodic sequences of pseudoprimes connected with Carmichael numbers and the least period of the function lC_x

Authors 1

Affiliations

  1. Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-950 Warszawa, Poland

Bibliography

  1. W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 140 (1994), 703-722.
  2. N. G. W. H. Beeger, On even numbers m dividing 2m-2, Amer. Math. Monthly 58 (1951), 553-555.
  3. M. Cipolla, Sui numeri composti P, che verificano la congruenza di Fermat aP-11(modP), Ann. di Mat. (3) 9 (1904), 139-160.
  4. J. H. Conway, R. K. Guy, W. A. Schneeberger and N. J. A. Sloane, The primary pretenders, Acta Arith. 78 (1997), 307-313.
  5. A. Korselt, Problème chinois, L'intermédiare des mathématiciens 6 (1899), 142-143.
  6. C. Pomerance, A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), 4-9.
  7. C. Pomerance, I. L. Selfridge and S. S. Wagstaff, The pseudoprimes to 25·10⁹, Math. Comp. 35 (1980), 1003-1026.
  8. P. Ribenboim, The New Book of Prime Number Records, Springer, New York, 1996.
  9. A. Rotkiewicz, Pseudoprime Numbers and Their Generalizations, Student Association of Faculty of Sciences, Univ. of Novi Sad, 1972.
  10. A. Schinzel, Sur les nombres composés n qui divisent an-a, Rend. Circ. Mat. Palermo (2) 7 (1958), 37-41.
  11. W. Sierpiński, A remark on composite numbers m which are factors of am-a, Wiadom. Mat. 4 (1961), 183-184 (in Polish; MR 23#A87).
  12. W. Sierpiński, Elementary Theory of Numbers, Monografie Mat. 42, PWN, Warszawa, 1964 (2nd ed., North-Holland, Amsterdam, 1987).
  13. K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. 3 (1892), 265-284.
Pages:
75-83
Main language of publication
English
Received
1998-05-26
Accepted
1999-05-24
Published
1999
Exact and natural sciences