ArticleOriginal scientific text

Title

On the diameter of sets of almost powers

Authors 1, 2

Affiliations

  1. Sportsingel 30, 2924 XN Krimpen aan den IJssel, The Netherlands
  2. Mathematical Institute, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands

Bibliography

  1. A. Baker, The theory of linear forms in logarithms, in: A. Baker and D. W. Masser (eds.), Transcendence Theory: Advances and Applications, London, 1977, 1-27.
  2. A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
  3. M. A. Bennett, Simultaneous rational approximation to binomial functions, Trans. Amer. Math. Soc. 348 (1996), 1717-1738.
  4. G. V. Chudnovsky, On the method of Thue-Siegel, Ann. of Math. (2) 117 (1983), 325-382.
  5. W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980.
  6. M. M. Sweet, A theorem in Diophantine approximations, J. Number Theory 5 (1973), 245-251.
  7. J. Turk, Almost powers in short intervals, Arch. Math. (Basel) 43 (1984), 157-166.
  8. N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.
  9. B. M. M. de Weger, Algorithms for Diophantine Equations, CWI Tract 65, Centrum Wisk. Inform., Amsterdam, 1989, 19-26.
  10. B. M. M. de Weger and C. E. van de Woestijne, On the power-free parts of consecutive integers, Acta Arith., this issue, 387-395.
Pages:
371-385
Main language of publication
English
Received
1998-10-23
Accepted
1999-04-30
Published
1999
Exact and natural sciences