ArticleOriginal scientific text

Title

Quadratic factors of f(x) -g(y)

Authors 1

Affiliations

  1. Mathematisches Institut, Universität Basel, Rheinsprung 21, 4051 Basel, Switzerland

Bibliography

  1. Yu. F. Bilu and R. F. Tichy, The Diophantine equation f(x) = g(y), submitted.
  2. P. Cassou-Noguès et J.-M. Couveignes, Factorisations explicites de g(y)- h(z), Acta Arith. 87 (1999), 291-317.
  3. W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247.
  4. W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181.
  5. M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55.
  6. M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146.
  7. M. Fried, On a theorem of Ritt and related Diophantine problems, J. Reine Angew. Math. 264 (1974), 40-55.
  8. M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-601.
  9. M. Fried, Variables separated polynomials, the genus 0 problem and moduli spaces, in: Number Theory in Progress (Zakopane, 1997), de Gruyter, 1999, 169-228.
  10. S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983.
  11. R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Pitman Monographs Surveys Pure Math. 65, Longman Sci. Tech., 1993.
  12. J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), 51-66.
  13. D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts in Math. 80, Springer, 1982.
  14. A. Schinzel, Selected Topics on Polynomials, The Univ. of Michigan Press, Ann Arbor, MI, 1983.
  15. C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1929, Nr. 1.
  16. G. Turnwald, On Schur's conjecture, J. Austral. Math. Soc. 58 (1995), 312-357.
  17. G. Turnwald, Some notes on monodromy groups of polynomials, in: Number Theory in Progress (Zakopane, 1997), de Gruyter, 1999, 539-552.
  18. H. A. Tverberg, A study in irreducibility of polynomials, Ph.D. thesis, Department of Mathematics, University of Bergen, 1968.
Pages:
341-355
Main language of publication
English
Received
1998-08-28
Accepted
1999-03-12
Published
1999
Exact and natural sciences