ArticleOriginal scientific text
Title
Quadratic factors of f(x) -g(y)
Authors 1
Affiliations
- Mathematisches Institut, Universität Basel, Rheinsprung 21, 4051 Basel, Switzerland
Bibliography
- Yu. F. Bilu and R. F. Tichy, The Diophantine equation f(x) = g(y), submitted.
- P. Cassou-Noguès et J.-M. Couveignes, Factorisations explicites de g(y)- h(z), Acta Arith. 87 (1999), 291-317.
- W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247.
- W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181.
- M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55.
- M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146.
- M. Fried, On a theorem of Ritt and related Diophantine problems, J. Reine Angew. Math. 264 (1974), 40-55.
- M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-601.
- M. Fried, Variables separated polynomials, the genus 0 problem and moduli spaces, in: Number Theory in Progress (Zakopane, 1997), de Gruyter, 1999, 169-228.
- S. Lang, Fundamentals of Diophantine Geometry, Springer, 1983.
- R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Pitman Monographs Surveys Pure Math. 65, Longman Sci. Tech., 1993.
- J. F. Ritt, Prime and composite polynomials, Trans. Amer. Math. Soc. 23 (1922), 51-66.
- D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts in Math. 80, Springer, 1982.
- A. Schinzel, Selected Topics on Polynomials, The Univ. of Michigan Press, Ann Arbor, MI, 1983.
- C. L. Siegel, Über einige Anwendungen Diophantischer Approximationen, Abh. Preuss. Akad. Wiss. Phys.-Math. Kl. 1929, Nr. 1.
- G. Turnwald, On Schur's conjecture, J. Austral. Math. Soc. 58 (1995), 312-357.
- G. Turnwald, Some notes on monodromy groups of polynomials, in: Number Theory in Progress (Zakopane, 1997), de Gruyter, 1999, 539-552.
- H. A. Tverberg, A study in irreducibility of polynomials, Ph.D. thesis, Department of Mathematics, University of Bergen, 1968.