ArticleOriginal scientific text
Title
Numbers representable by five prime squares with primes in an arithmetic progression
Authors 1
Affiliations
- Department of Mathematics, The Capital Normal University, Beijing 100037, P.R. China
Bibliography
- H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980.
- P. X. Gallagher, A large sieve density estimates near σ = 1, Invent. Math. 11 (1970), 329-339.
- L. K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monographs 13, Amer. Math. Soc., 1965.
- J. Y. Liu and T. Zhan, The ternary Goldbach problem in arithmetic progressions, Acta Arith. 82 (1997), 197-227.
- M. C. Liu and K. M. Tsang, Small prime solutions of linear equations, in: Théorie des Nombres, de Gruyter, 1989, 595-624.
- M. C. Liu and K. M. Tsang, Small prime solutions of some additive equations, Monatsh. Math. 111 (1991), 147-169.
- M. C. Liu and T. Zhan, The Goldbach problem with primes in arithmetic progressions, in: Analytic Number Theory, Y. Motohashi (ed.), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, 1997, 227-251.
- H. L. Montgomery and R. C. Vaughan, The exceptional set of Goldbach's problem, Acta Arith. 27 (1975), 353-370.
- R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Univ. Press, 1981.
- I. M. Vinogradov, Elements of Number Theory, Dover, New York, 1954.
- Y. H. Wang, Some exponential sums over primes in an arithmetic progression, Shanda Xuebao, to appear (in Chinese).