ArticleOriginal scientific text

Title

Numbers representable by five prime squares with primes in an arithmetic progression

Authors 1

Affiliations

  1. Department of Mathematics, The Capital Normal University, Beijing 100037, P.R. China

Bibliography

  1. H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980.
  2. P. X. Gallagher, A large sieve density estimates near σ = 1, Invent. Math. 11 (1970), 329-339.
  3. L. K. Hua, Additive Theory of Prime Numbers, Transl. Math. Monographs 13, Amer. Math. Soc., 1965.
  4. J. Y. Liu and T. Zhan, The ternary Goldbach problem in arithmetic progressions, Acta Arith. 82 (1997), 197-227.
  5. M. C. Liu and K. M. Tsang, Small prime solutions of linear equations, in: Théorie des Nombres, de Gruyter, 1989, 595-624.
  6. M. C. Liu and K. M. Tsang, Small prime solutions of some additive equations, Monatsh. Math. 111 (1991), 147-169.
  7. M. C. Liu and T. Zhan, The Goldbach problem with primes in arithmetic progressions, in: Analytic Number Theory, Y. Motohashi (ed.), London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, 1997, 227-251.
  8. H. L. Montgomery and R. C. Vaughan, The exceptional set of Goldbach's problem, Acta Arith. 27 (1975), 353-370.
  9. R. C. Vaughan, The Hardy-Littlewood Method, Cambridge Univ. Press, 1981.
  10. I. M. Vinogradov, Elements of Number Theory, Dover, New York, 1954.
  11. Y. H. Wang, Some exponential sums over primes in an arithmetic progression, Shanda Xuebao, to appear (in Chinese).
Pages:
217-244
Main language of publication
English
Received
1998-11-03
Published
1999
Exact and natural sciences