ArticleOriginal scientific text

Title

On the height constant for curves of genus two

Authors 1

Affiliations

  1. Mathematisches Institut, Universitätsstr. 1, D-40225 Düsseldorf, Germany

Keywords

curves of genus two, Jacobians, local fields, number fields, height constant, torsion points, rational torsion subgroup, canonical height

Bibliography

  1. J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, Cambridge Univ. Press, Cambridge, 1996.
  2. E. V. Flynn, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003-3015.
  3. E. V. Flynn and N. P. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith. 79 (1997), 333-352.
  4. W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math. 129, Springer, 1991.
  5. S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538.
  6. Kummer surface formulas, ftp://ftp.liv.ac.uk/~ftp/pub/genus2/.
  7. Magma homepage, http://www.maths.usyd.edu.au:8000/u/magma/.
Pages:
183-201
Main language of publication
English
Received
1998-10-29
Accepted
1999-03-10
Published
1999
Exact and natural sciences