ArticleOriginal scientific text

Title

Inhomogeneous diophantine approximation on polynomials in p

Authors 1, 2, 3

Affiliations

  1. Institute of Mathematics, Academy of Sciences, Surganova 11, 220072 Minsk, Belarus
  2. Department of Mathematics, University of York, Heslington York, YO1 5DD, England
  3. Department of Mathematics, Northwest University, Xi'an, 710069, Shaanxi P.R. China

Bibliography

  1. A. Baker, On a theorem of Sprindžuk, Proc. Roy. Soc. London Ser. A 292 (1966), 92-104.
  2. V. Bernik, Application of Hausdorff dimension in the theory of Diophantine approximation, Acta Arith. 42 (1983), 219-253 (in Russian); English transl.: Amer. Math. Soc. Transl. 140 (1988), 15-44.
  3. V. Bernik and Yu. Melnichuk, Properties of integral polynomials of p-adic variables with a small norm in the disc, Vestnik L'vov. Politekhn. Inst. 182 (1985), 63-64 (in Russian).
  4. A. O. Gel'fond, Transcendental and Algebraic Numbers, GITTL, Moscow, 1952 (in Russian); English transl.: Dover, New York, 1960.
  5. E. Lutz, Sur les approximations diophantiennes linéaires et p-adiques, Actualités Sci. Indust. 1224, Hermann, 1955.
  6. K. Mahler, Über das Mass der Menge aller s-Zahlen, Math. Ann. 106 (1932), 131-139.
  7. A. Sprindžuk, A proof of Mahler's conjecture on the measure of the set of s-numbers, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 379-436 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 51 (1966), 215-272.
  8. A. Sprindžuk, Mahler's Problem in Metric Number Theory, Transl. Math. Monographs 25, Amer. Math. Soc., Providence, 1969.
Pages:
37-48
Main language of publication
English
Received
1998-05-05
Accepted
1999-02-03
Published
1999
Exact and natural sciences