ArticleOriginal scientific textInhomogeneous diophantine approximation on polynomials in
Title
Inhomogeneous diophantine approximation on polynomials in
Authors 1, 2, 3
Affiliations
- Institute of Mathematics, Academy of Sciences, Surganova 11, 220072 Minsk, Belarus
- Department of Mathematics, University of York, Heslington York, YO1 5DD, England
- Department of Mathematics, Northwest University, Xi'an, 710069, Shaanxi P.R. China
Bibliography
- A. Baker, On a theorem of Sprindžuk, Proc. Roy. Soc. London Ser. A 292 (1966), 92-104.
- V. Bernik, Application of Hausdorff dimension in the theory of Diophantine approximation, Acta Arith. 42 (1983), 219-253 (in Russian); English transl.: Amer. Math. Soc. Transl. 140 (1988), 15-44.
- V. Bernik and Yu. Melnichuk, Properties of integral polynomials of p-adic variables with a small norm in the disc, Vestnik L'vov. Politekhn. Inst. 182 (1985), 63-64 (in Russian).
- A. O. Gel'fond, Transcendental and Algebraic Numbers, GITTL, Moscow, 1952 (in Russian); English transl.: Dover, New York, 1960.
- E. Lutz, Sur les approximations diophantiennes linéaires et p-adiques, Actualités Sci. Indust. 1224, Hermann, 1955.
- K. Mahler, Über das Mass der Menge aller s-Zahlen, Math. Ann. 106 (1932), 131-139.
- A. Sprindžuk, A proof of Mahler's conjecture on the measure of the set of s-numbers, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 379-436 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 51 (1966), 215-272.
- A. Sprindžuk, Mahler's Problem in Metric Number Theory, Transl. Math. Monographs 25, Amer. Math. Soc., Providence, 1969.