ArticleOriginal scientific text

Title

On the number of coprime integer pairs within a circle

Authors 1, 2

Affiliations

  1. Department of Mathematics, Shandong Normal University, Jinan, 250014, Shandong, P.R. China
  2. Beijing Institute of Petrochemical Technology, Daxing, Beijing 102600, P.R. China

Bibliography

  1. R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145.
  2. E. Bombieri and H. Iwaniec, On the order of ζ(1/2+it), Ann. Scuola Norm. Sup. Pisa 13 (1986), 449-472.
  3. E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
  4. D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, ibid. 16 (1983), 242-266.
  5. D. Hensley, The number of lattice points within a contour and visible from the origin, Pacific J. Math. 166 (1994), 295-304.
  6. M. N. Huxley, Exponential sums and lattice points II, Proc. London Math. Soc. 66 (1993), 279-301.
  7. A. Ivić, The Riemann Zeta-function, Wiley, 1985.
  8. C. H. Jia, On the distribution of squarefree numbers (II), Sci. China Ser. A 8 (1992), 812-827.
  9. E. Krätzel, Lattice Points, Deutsch. Verlag Wiss., Berlin, 1988.
  10. S. H. Min, Methods of Number Theory, Science Press, Beijing, 1983 (in Chinese).
  11. W. G. Nowak, Primitive lattice points in rational ellipses and related arithmetical functions, Monatsh. Math. 106 (1988), 57-63.
  12. B. R. Srinivasan, The lattice point problem of many-dimensional hyperboloids II, Acta Arith. 8 (1963), 173-204.
Pages:
1-16
Main language of publication
English
Received
1996-11-22
Accepted
1999-02-03
Published
1999
Exact and natural sciences