ArticleOriginal scientific text

Title

Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations

Authors 1

Affiliations

  1. Division of General Education, Ashikaga Institute of Technology, 268-1 Omae, Ashikaga, Tochigi 326, Japan

Bibliography

  1. [BS] J. Browkin and A. Schinzel, On the equation 2n-D=y2, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 311-318.
  2. [B1] E. Brown, Diophantine equations of the form x2+D=yn, J. Reine Angew. Math. 274/275 (1975), 385-389.
  3. [B2] E. Brown, Diophantine equations of the form ax2+Db2=yn, ibid. 291 (1977), 118-127.
  4. [BG] Y. Bugeaud and K. Győry, Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith. 74 (1996), 273-292.
  5. [Cao] Z. F. Cao, A note on the diophantine equation ax+by=cz, Acta Arith., to appear.
  6. [Ca] J. W. S. Cassels, On the equation ax-by=1, Amer. J. Math. 75 (1953), 159-162.
  7. [Co1] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. (3) 16 (1966), 153-166.
  8. [Co2] J. H. E. Cohn, The diophantine equation x2+2k=yn, Arch. Math. (Basel) 59 (1992), 341-344.
  9. [Co3] J. H. E. Cohn, The diophantine equation x2+C=yn, Acta Arith. 65 (1993), 367-381.
  10. [GL] Y.-D. Guo and M.-H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Comment. Math. Univ. St. Pauli 44 (1995), 225-228.
  11. [G] R. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, 1994.
  12. [J] L. Jeśmanowicz, Some remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/1956), 196-202 (in Polish).
  13. [LMN] M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
  14. [Le] M.-H. Le, On Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A 72 (1996), 97-98.
  15. [Lv] W. J. LeVeque, On the equation ax-by=1, Amer. J. Math. 74 (1952), 235-331.
  16. [M] M. Mignotte, A corollary to a theorem of Laurent-Mignotte-Nesterenko, Acta Arith. 86 (1998), 101-111.
  17. [MW] M. Mignotte and M. Waldschmidt, Linear forms in two logarithms and Schneider's method III, Ann. Fac. Sci. Toulouse Math. 97 (1989), 43-75.
  18. [N1] T. Nagell, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk. Mat. Forenings Skrigter 13 (1923), 65-82.
  19. [N2] T. Nagell, Verallgemeinerung eines Fermatschen Satzes, Arch. Math. (Basel) 5 (1954), 153-159.
  20. [N3] T. Nagell, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. Ser. IV (2) 16 (1955), 1-38.
  21. [N4] T. Nagell, Sur une classe d'équations exponentielles, Ark. Mat. 3 (1958), 569-582.
  22. [P1] S. S. Pillai, On the inequality 0<ax-byn, J. Indian Math. Soc. (1) 19 (1931), 1-11.
  23. [P2] S. S. Pillai, On ax-by=c, J. Indian Math. Soc. (2) 2 (1936), 19-122; Corr. J. Indian Math. Soc., 2, 215.
  24. [Ra] S. Rabinowitz, On Mordell's equation y2+k=x3 with k=±2n3m, Doctoral dissertation at the City University of New York, 1971.
  25. [Ri] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979.
  26. [Sc] R. Scott, On the equations px-by=c and ax+by=cz, J. Number Theory 44 (1993), 153-165.
  27. [Si] W. Sierpi/nski, On the equation 3x+4y=5z, Wiadom. Mat. 1 (1955/1956), 194-195 (in Polish).
  28. [Ta] K. Takakuwa, A remark on Jeśmanowicz' conjecture, Proc. Japan Acad. Ser. A 72 (1996), 109-110.
  29. [Te1] N. Terai, The Diophantine equation x2+qm=pn, Acta Arith. 63 (1993), 351-358.
  30. [Te2] N. Terai, The Diophantine equation ax+by=cz, Proc. Japan Acad. Ser. A 70 (1994), 22-26.
  31. [Te3] N. Terai, The Diophantine equation ax+by=cz II, ibid. 71 (1995), 109-110.
  32. [Te4] N. Terai, The Diophantine equation ax+by=cz III, ibid. 72 (1996), 20-22.
Pages:
17-35
Main language of publication
English
Received
1996-12-10
Accepted
1998-10-26
Published
1999
Exact and natural sciences