ArticleOriginal scientific text

Title

p-adic logarithmic forms and group varieties II

Authors 1

Affiliations

  1. Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Keywords

p-adic logarithmic form, group variety

Bibliography

  1. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
  2. E. Bombieri and J. Vaaler, On Siegel's lemma, Invent. Math. 73 (1983), 11-32; Addendum, ibid. 75 (1984), 377.
  3. A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Univ. Press, 1991.
  4. H. Hasse, Number Theory, Springer, Berlin, 1980.
  5. E. M. Matveev, Elimination of the multiple n! from estimates for linear forms in logarithms, Tagungsbericht 11/1996, Diophantine Approximations, 17.03-23.03, 1996, Oberwolfach.
  6. E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Izv. Math. 62 (1998), 723-772.
  7. C. L. Stewart and K. Yu, On the abc conjecture, Math. Ann. 291 (1991), 225-230.
  8. K. Yu, Linear forms in p-adic logarithms, Acta Arith. 53 (1989), 107-186.
  9. K. Yu, Linear forms in p-adic logarithms II, III, Compositio Math. 74 (1990), 15-113; 91 (1994), 241-276.
  10. K. Yu, P-adic logarithmic forms and group varieties I, J. Reine Angew. Math. 502 (1998), 29-92.
Pages:
337-378
Main language of publication
English
Received
1998-11-16
Published
1999
Exact and natural sciences