ArticleOriginal scientific text
Title
p-adic logarithmic forms and group varieties II
Authors 1
Affiliations
- Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
Keywords
p-adic logarithmic form, group variety
Bibliography
- A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
- E. Bombieri and J. Vaaler, On Siegel's lemma, Invent. Math. 73 (1983), 11-32; Addendum, ibid. 75 (1984), 377.
- A. Fröhlich and M. J. Taylor, Algebraic Number Theory, Cambridge Univ. Press, 1991.
- H. Hasse, Number Theory, Springer, Berlin, 1980.
- E. M. Matveev, Elimination of the multiple n! from estimates for linear forms in logarithms, Tagungsbericht 11/1996, Diophantine Approximations, 17.03-23.03, 1996, Oberwolfach.
- E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, Izv. Math. 62 (1998), 723-772.
- C. L. Stewart and K. Yu, On the abc conjecture, Math. Ann. 291 (1991), 225-230.
- K. Yu, Linear forms in p-adic logarithms, Acta Arith. 53 (1989), 107-186.
- K. Yu, Linear forms in p-adic logarithms II, III, Compositio Math. 74 (1990), 15-113; 91 (1994), 241-276.
- K. Yu, P-adic logarithmic forms and group varieties I, J. Reine Angew. Math. 502 (1998), 29-92.