ArticleOriginal scientific text

Title

On a variant of the Erdős-Ginzburg-Ziv problem

Authors 1, 2, 3

Affiliations

  1. Département de Mathématiques, Université de Bretagne Occidentale, 6 avenue Victor Le Gorgeu, B.P. 809, 29285 Brest Cedex, France
  2. Département de Mathématiques, Université de Saint-Etienne, 23 rue du Dr Paul Michelon, 42023 Saint-Etienne Cedex 2, France
  3. Department of Mathematics, University of Helsinki, PL 4 (Yliopistonkatu 5), 00014 Helsingin Yliopisto, Finland

Bibliography

  1. [AD] N. Alon and M. Dubiner, Zero-sum sets of prescribed size, in: Combinatorics, Paul Erdős is Eighty, Volume 1, Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest,1993, 33-50.
  2. [BD] A. Bialostocki and P. Dierker, On the Erdős-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings, Discrete Math. 110 (1992), 1-8.
  3. [BL] A. Bialostocki and M. Lotspeich, Some developments of the Erdős-Ginzburg-Ziv theorem, I, in: Sets, Graphs and Numbers (Budapest, 1991), Colloq. Math. Soc. János Bolyai 60, North-Holland, 1992, 97-117.
  4. [C] Y. Caro, Zero-sum problems - A survey, Discrete Math. 152 (1996), 93-113.
  5. [EGZ] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel Sect. F Math. Phys. 10 (1961-1962), 41-43.
  6. [B] W. Brakemeier, Eine Anzahlformel von Zahlen modulo n, Monatsh. Math. 85 (1978), 277-282.
Pages:
331-336
Main language of publication
English
Received
1998-10-26
Accepted
1998-11-23
Published
1999
Exact and natural sciences