ArticleOriginal scientific text

Title

A note on basic Iwasawa λ-invariants of imaginary quadratic fields and congruence of modular forms

Authors 1

Affiliations

  1. School of Mathematics, Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-012, Korea

Bibliography

  1. H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, New York, 1995.
  2. H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London Ser. A 322 (1971), 405-420.
  3. P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory 6 (1974), 276-278.
  4. K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31-38.
  5. K. Horie and Y. Onishi, The existence of certain infinite families of imaginary quadratic fields, J. Reine Angew. Math. 390 (1988), 97-113.
  6. K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
  7. W. Kohnen and K. Ono, Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication, Invent. Math. 135 (1999), 387-398.
  8. J. Nakagawa and K. Horie, Elliptic curves with no rational points, Proc. Amer. Math. Soc. 104 (1988), 20-24.
  9. K. Ono, Indivisibility of class numbers of real quadratic fields, Compositio Math., to appear.
  10. G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481.
  11. J. Sturm, On the congruence of modular forms, in: Lecture Notes in Math. 1240, Springer, 1984, 275-280.
  12. H. Taya, Iwasawa invariants and class numbers of quadratic fields for the prime 3, Proc. Amer. Math. Soc., to appear.
Pages:
295-299
Main language of publication
English
Received
1998-11-16
Accepted
1999-01-26
Published
1999
Exact and natural sciences