ArticleOriginal scientific text

Title

On a positivity property of the Riemann ξ-function

Authors 1

Affiliations

  1. AT&T Labs - Research, Florham Park, New Jersey 07932-0971, U.S.A.

Bibliography

  1. J.-B. Bost and A. Connes, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. 1 (1995), 411-457.
  2. W. F. Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation, Springer, New York, 1974.
  3. A. Erdélyi, W. Magnus, F. Oberhettinger and R. G. Tricomi, Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.
  4. A. Hinkkanen, On functions of bounded type, Complex Variables Theory Appl. 34 (1997), 119-139.
  5. N. M. Katz and P. Sarnak, Zeros of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1-26.
  6. A. Knauf, On a ferromagnetic spin chain, Comm. Math. Phys. 153 (1993), 77-115.
  7. N. Levinson and H. L. Montgomery, Zeros of the derivatives of the Riemann zeta-function, Acta Math. 133 (1974), 397-413.
  8. S. J. Patterson, An Introduction to the Theory of the Riemann Zeta Function, Cambridge Univ. Press, Cambridge, 1988.
  9. E. C. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd ed., revised by D. R. Heath-Brown, Oxford Univ. Press, 1986.
  10. A. M. Turing, Some calculations of the Riemann zeta function, Proc. London Math. Soc. 3 (1953), 99-117; also in: Collected Works of A. M. Turing, Vol. I, J. L. Britton (ed.), North-Holland, 1992, 79-97. Notes, 254-261.
Pages:
217-234
Main language of publication
English
Received
1998-06-23
Accepted
1998-11-04
Published
1999
Exact and natural sciences