ArticleOriginal scientific text

Title

Conditions under which K(_F) is not generated by Dennis-Stein symbols

Authors 1

Affiliations

  1. Mathematics Department, University College Dublin, Belfield, Dublin 4, Ireland

Bibliography

  1. R. K. Dennis and M. R. Stein, The functor K₂: a survey of computations and problems, in: Lecture Notes in Math. 342, Springer, 1973, 243-280.
  2. R. K. Dennis and M. R. Stein, K₂ of radical ideals and semi-local rings revisited, in: Lecture Notes in Math. 342, Springer, 1973, 281-303.
  3. M. Geijsberts, On the generation of the tame kernel by Dennis-Stein symbols, J. Number Theory 50 (1995), 167-179.
  4. J. Hurrelbrink, On K₂() and presentations of Sln() in the real quadratic case, J. Reine Angew. Math. 319 (1980), 213-220.
  5. J. Hurrelbrink, On the size of certain K-groups, Comm. Algebra 10 (1982), 1873-1889.
  6. F. Keune, On the structure of the K₂ of the ring of integers of a number field, K-Theory 2 (1989), 625-645.
  7. J. Milnor, Introduction to Algebraic K-Theory, Ann. of Math. Stud. 72, Princeton Univ. Press, 1971.
  8. T. Mulders, Generating the tame and wild kernels by Dennis-Stein symbols, K-Theory 5 (1992), 449-470.
  9. T. Mulders, On a map from K₀ to K₂, Ph.D. thesis, Katholiecke Universiteit Nijmegen, 1992.
  10. J. Neukirch, Class Field Theory, Springer, Berlin, 1986.
  11. A. A. Suslin, Torsion in K₂ of fields, K-Theory 1 (1987), 5-29.
  12. J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257-274.
  13. W. van der Kallen, Stability for K₂ of Dedekind rings of arithmetic type, in: Lecture Notes in Math. 854, Springer, 1981, 217-248.
Pages:
189-199
Main language of publication
English
Received
1998-08-11
Accepted
1998-10-19
Published
1999
Exact and natural sciences