ArticleOriginal scientific text
Title
Numbers with a large prime factor
Authors 1, 2
Affiliations
- Department of Mathematics, Harbin Institute of Technology, Harbin 150006, P.R. China
- Institut Elie Cartan - CNRS UMR 9973, Université Henri Poincaré (Nancy 1), 54506 Vandœuvre-lès-Nancy, France
Bibliography
- R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231.
- R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145.
- R. C. Baker, G. Harman and J. Rivat, Primes of the form
, J. Number Theory 50 (1995), 261-277. - A. Balog, Numbers with a large prime factor I, Studia Sci. Math. Hungar. 15 (1980), 139-146; II, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 49-67.
- A. Balog, G. Harman and J. Pintz, Numbers with a large prime factor IV, J. London Math. Soc. (2) 28 (1983), 218-226.
- E. Fouvry, Sur le théorème de Brun-Titchmarsh, Acta Arith. 43 (1984), 417-424.
- E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
- S. W. Graham, The greatest prime factor of the integers in an interval, J. London Math. Soc. (2) 24 (1981), 427-440.
- S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991.
- G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-13.
- D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266.
- D. R. Heath-Brown, The largest prime factor of the integers in an interval, Sci. China Ser. A 39 (1996), 449-476.
- D. R. Heath-Brown and C. H. Jia, The largest prime factor of the integers in an interval II, J. Reine Angew. Math. 498 (1998), 35-59.
- M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford Sci. Publ., Clarendon Press, Oxford, 1996.
- H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320.
- C. H. Jia, The greatest prime factor of the integers in an interval I, Acta Math. Sinica 29 (1986), 815-825; II, Acta Math. Sinica 32 (1989), 188-199; III, Acta Math. Sinica (N.S.) 9 (1993), 321-336; IV, Acta Math. Sinica 12 (1996), 433-445.
- M. Jutila, On numbers with a large prime factor IV, J. Indian Math. Soc. (N.S.) 37 (1973), 43-53.
- H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 301-328.
- H.-Q. Liu, A special triple exponential sum, Mathematika 42 (1995), 137-143.
- K. Ramachandra, A note on numbers with a large prime factor I, J. London Math. Soc. (2) 1 (1969), 303-306; II, J. Indian Math. Soc. 34 (1970), 39-48.
- E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.
- J. Wu, Nombres -libres dans les petits intervalles, Acta Arith. 65 (1993), 97-116.