ArticleOriginal scientific text

Title

Numbers with a large prime factor

Authors 1, 2

Affiliations

  1. Department of Mathematics, Harbin Institute of Technology, Harbin 150006, P.R. China
  2. Institut Elie Cartan - CNRS UMR 9973, Université Henri Poincaré (Nancy 1), 54506 Vandœuvre-lès-Nancy, France

Bibliography

  1. R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231.
  2. R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145.
  3. R. C. Baker, G. Harman and J. Rivat, Primes of the form [nc], J. Number Theory 50 (1995), 261-277.
  4. A. Balog, Numbers with a large prime factor I, Studia Sci. Math. Hungar. 15 (1980), 139-146; II, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 49-67.
  5. A. Balog, G. Harman and J. Pintz, Numbers with a large prime factor IV, J. London Math. Soc. (2) 28 (1983), 218-226.
  6. E. Fouvry, Sur le théorème de Brun-Titchmarsh, Acta Arith. 43 (1984), 417-424.
  7. E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
  8. S. W. Graham, The greatest prime factor of the integers in an interval, J. London Math. Soc. (2) 24 (1981), 427-440.
  9. S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991.
  10. G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-13.
  11. D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266.
  12. D. R. Heath-Brown, The largest prime factor of the integers in an interval, Sci. China Ser. A 39 (1996), 449-476.
  13. D. R. Heath-Brown and C. H. Jia, The largest prime factor of the integers in an interval II, J. Reine Angew. Math. 498 (1998), 35-59.
  14. M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford Sci. Publ., Clarendon Press, Oxford, 1996.
  15. H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320.
  16. C. H. Jia, The greatest prime factor of the integers in an interval I, Acta Math. Sinica 29 (1986), 815-825; II, Acta Math. Sinica 32 (1989), 188-199; III, Acta Math. Sinica (N.S.) 9 (1993), 321-336; IV, Acta Math. Sinica 12 (1996), 433-445.
  17. M. Jutila, On numbers with a large prime factor IV, J. Indian Math. Soc. (N.S.) 37 (1973), 43-53.
  18. H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 301-328.
  19. H.-Q. Liu, A special triple exponential sum, Mathematika 42 (1995), 137-143.
  20. K. Ramachandra, A note on numbers with a large prime factor I, J. London Math. Soc. (2) 1 (1969), 303-306; II, J. Indian Math. Soc. 34 (1970), 39-48.
  21. E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.
  22. J. Wu, Nombres -libres dans les petits intervalles, Acta Arith. 65 (1993), 97-116.
Pages:
163-187
Main language of publication
English
Received
1998-05-12
Accepted
1998-09-22
Published
1999
Exact and natural sciences