PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1999 | 89 | 2 | 163-187
Tytuł artykułu

Numbers with a large prime factor

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
Słowa kluczowe
Czasopismo
Rocznik
Tom
89
Numer
2
Strony
163-187
Opis fizyczny
Daty
wydano
1999
otrzymano
1998-05-12
poprawiono
1998-09-22
Twórcy
  • Department of Mathematics, Harbin Institute of Technology, Harbin 150006, P.R. China
autor
  • Institut Elie Cartan - CNRS UMR 9973, Université Henri Poincaré (Nancy 1), 54506 Vandœuvre-lès-Nancy, France
Bibliografia
  • [1] R. C. Baker, The greatest prime factor of the integers in an interval, Acta Arith. 47 (1986), 193-231.
  • [2] R. C. Baker and G. Harman, Numbers with a large prime factor, Acta Arith. 73 (1995), 119-145.
  • [3] R. C. Baker, G. Harman and J. Rivat, Primes of the form $[n^c]$, J. Number Theory 50 (1995), 261-277.
  • [4] A. Balog, Numbers with a large prime factor I, Studia Sci. Math. Hungar. 15 (1980), 139-146; II, in: Topics in Classical Number Theory, Colloq. Math. Soc. János Bolyai 34, North-Holland, 1984, 49-67.
  • [5] A. Balog, G. Harman and J. Pintz, Numbers with a large prime factor IV, J. London Math. Soc. (2) 28 (1983), 218-226.
  • [6] E. Fouvry, Sur le théorème de Brun-Titchmarsh, Acta Arith. 43 (1984), 417-424.
  • [7] E. Fouvry and H. Iwaniec, Exponential sums with monomials, J. Number Theory 33 (1989), 311-333.
  • [8] S. W. Graham, The greatest prime factor of the integers in an interval, J. London Math. Soc. (2) 24 (1981), 427-440.
  • [9] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, Cambridge Univ. Press, 1991.
  • [10] G. Harman, On the distribution of αp modulo one, J. London Math. Soc. (2) 27 (1983), 9-13.
  • [11] D. R. Heath-Brown, The Pjateckiĭ-Šapiro prime number theorem, J. Number Theory 16 (1983), 242-266.
  • [12] D. R. Heath-Brown, The largest prime factor of the integers in an interval, Sci. China Ser. A 39 (1996), 449-476.
  • [13] D. R. Heath-Brown and C. H. Jia, The largest prime factor of the integers in an interval II, J. Reine Angew. Math. 498 (1998), 35-59.
  • [14] M. N. Huxley, Area, Lattice Points and Exponential Sums, Oxford Sci. Publ., Clarendon Press, Oxford, 1996.
  • [15] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320.
  • [16] C. H. Jia, The greatest prime factor of the integers in an interval I, Acta Math. Sinica 29 (1986), 815-825; II, Acta Math. Sinica 32 (1989), 188-199; III, Acta Math. Sinica (N.S.) 9 (1993), 321-336; IV, Acta Math. Sinica 12 (1996), 433-445.
  • [17] M. Jutila, On numbers with a large prime factor IV, J. Indian Math. Soc. (N.S.) 37 (1973), 43-53.
  • [18] H.-Q. Liu, The greatest prime factor of the integers in an interval, Acta Arith. 65 (1993), 301-328.
  • [19] H.-Q. Liu, A special triple exponential sum, Mathematika 42 (1995), 137-143.
  • [20] K. Ramachandra, A note on numbers with a large prime factor I, J. London Math. Soc. (2) 1 (1969), 303-306; II, J. Indian Math. Soc. 34 (1970), 39-48.
  • [21] E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 2nd ed., revised by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.
  • [22] J. Wu, Nombres 𝓑-libres dans les petits intervalles, Acta Arith. 65 (1993), 97-116.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-aav89i2p163bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.