ArticleOriginal scientific text

Title

Uniform distribution of primes having a prescribed primitive root

Authors 1

Affiliations

  1. Max-Planck-Institut für Mathematik, Gottfried-Claren-Straße 26, 53225 Bonn, Germany

Bibliography

  1. R. Heath-Brown, A remark on Artin's conjecture, Quart. J. Math. Oxford Ser. (2) 37 (1986), 27-38.
  2. H C. Hooley, Artin's conjecture for primitive roots, J. Reine Angew. Math. 225 (1967), 209-220.
  3. E. T. Jacobson and W. Y. Vélez, The Galois group of a radical extension of the rationals, Manuscripta Math. 67 (1990), 271-284.
  4. L H. W. Lenstra, Jr., On Artin's conjecture and Euclid's algorithm in global fields, Invent. Math. 42 (1977), 201-224.
  5. L H. W. Lenstra, Perfect arithmetic codes, Sém. Delange-Pisot-Poitou, 19e année 1978/79, Théorie des nombres, Fasc. 1, Exp. 15, 14 pp.
  6. M P. Moree, On a conjecture of Rodier on primitive roots, Abh. Math. Sem. Univ. Hamburg 67 (1997), 165-171.
  7. N W. Narkiewicz, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Math. 1087, Springer, 1984.
  8. A. Reznikov and P. Moree, Three-manifold subgroup growth, homology of coverings and simplicial volume, Asian J. Math. 1 (1997), 764-768.
  9. R F. Rodier, Estimation asymptotique de la distance minimale du dual des codes BCH et polynômes de Dickson, Discrete Math. 149 (1996), 205-221.
  10. W E. Weiss, Algebraic Number Theory, New York Univ. Press, New York, 1963.
Pages:
9-21
Main language of publication
English
Received
1997-04-07
Accepted
1998-12-03
Published
1999
Exact and natural sciences