ArticleOriginal scientific text
Title
Number of representations related to a linear recurrent basis
Authors , 1, 2
Affiliations
- Steklov Institute of Mathematics at St. Petersburg, 27 Fontanka, St. Petersburg 191011, Russia
- Institut de Mathématiques de Luminy, UPR 9016, Avenue de Luminy-Case 930, 13288 Marseille Cedex 9, France
Bibliography
- [AlZ] J. C. Alexander and D. Zagier, The entropy of a certain infinitely convolved Bernoulli measure, J. London Math. Soc. 44 (1991), 121-134.
- [AllS] J. P. Allouche and J. Shallit, The ring of k-regular sequences, Theoret. Comput. Sci. 98 (1992), 163-197.
- [Be] P. G. Becker, k-regular power series and Mahler-type functional equations, J. Number Theory 49 (1994), 269-286.
- [Bo] D. Bogdanov, Branching graph for the de Rham curve, Master Thesis, St. Petersburg State University, St. Petersburg, 1993.
- [Br] N. G. de Bruijn, On Mahler's partition problem, Indag. Math. 10 (1948), 210-220.
- [Bu] Y. Bugeaud, Sur la suite des nombres de la forme
, , to appear. - [Ca] L. Carlitz, Fibonacci representations, Fibonacci Quart. 6 (1968), 193-220.
- [Co] A. Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164-192.
- [D] P. Dumas, Récurrences Mahlériennes, suites automatiques, et études asymptotiques, Doctorat de mathématiques, Université de Bordeaux, 1993.
- [DF] P. Dumas et P. Flajolet, Asymptotique des récurrences mahlériennes: le cas cyclotomique, J. Théor. Nombres Bordeaux 8 (1996), 1-30.
- [DuT] J. M. Dumont et A. Thomas, Systèmes de numération et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci. 65 (1989), 153-169.
- [E] P. Erdős, On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61 (1939), 974-976.
- [Fr] C. Frougny, Representations of numbers and finite automata, Math. Systems Theory 25 (1992), 37-60.
- [JW] B. Jessen and A. Wintner, Distribution functions and the Riemann zeta function, Trans. Amer. Math. Soc. 38 (1938), 48-88.
- [KP] B. Kovács and A. Pethő, Number systems in integral domains, especially in orders of algebraic number fields, Acta Sci. Math. (Szeged) 55 (1991), 287-299.
- [LaNg] K.-S. Lau and S.-M. Ngai,
-spectrum of the Bernoulli convolution associated with the golden ratio, Studia Math. 131 (1998), 225-251. - [Po] A. J. van der Poorten, An introduction to continued fractions, in: Diophantine Analysis, London Math. Soc. Lecture Note Ser. 109, Cambridge Univ. Press, 1986, 99-138.
- [Pu] I. Pushkarev, The ideal lattices of multizigzags and the enumeration of Fibonacci partitions, Zap. Nauchn. Sem. POMI 223 (1995), 280-312 (in Russian).
- [Rh] G. de Rham, Sur une courbe plane, J. Math. Pures Appl. 35 (1956), 25-42.
- [Ru] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, New York, 1964.
- [S] N. A. Sidorov, The summation function for the number of Fibonacci representations, PDMI preprint 15/1995, 1-17.
- [SV] N. A. Sidorov and A. M. Vershik, Ergodic properties of the Erdős measure, the entropy of the goldenshift, and related problems, Monatsh. Math. 126 (1998), 215-261.