ArticleOriginal scientific text

Title

On consecutive integers of the form ax², by² and cz²

Authors 1

Affiliations

  1. School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, U.S.A.

Keywords

simultaneous Pell equations, linear forms in logarithms

Bibliography

  1. W. S. Anglin, Simultaneous Pell equations, Math. Comp. 65 (1996), 355-359.
  2. A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
  3. M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math. 498 (1998), 173-199.
  4. J. H. E. Cohn, The Diophantine equation x⁴ - Dy² = 1, II, Acta Arith. 78 (1997), 401-403.
  5. A. Khintchine, Continued Fractions, 3rd ed., P. Noordhoff, Groningen, 1963.
  6. M. Laurent, M. Mignotte et Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
  7. W. Ljunggren, Litt om simultane Pellske ligninger, Norsk Mat. Tidsskr. 23 (1941), 132-138.
  8. W. Ljunggren, Über die Gleichung x⁴ - Dy² = 1, Arch. f. Math. og Naturvidenskab B 45 (1942), 61-70.
  9. D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory 61 (1996), 52-66.
  10. R. G. E. Pinch, Simultaneous Pellian equations, Math. Proc. Cambridge Philos. Soc. 103 (1988), 35-46.
  11. D. T. Walker, On the diophantine equation mX² - nY² = ± 1, Amer. Math. Monthly 74 (1967), 504-513.
  12. P. G. Walsh, On two classes of simultaneous Pell equations with no solutions, Math. Comp., to appear.
  13. P. G. Walsh, On integer solutions to x² - dy² = 1, z² - 2dy² = 1, Acta Arith. 82 (1997), 69-76.
Pages:
363-370
Main language of publication
English
Received
1997-12-09
Accepted
1998-12-08
Published
1999
Exact and natural sciences