ArticleOriginal scientific text

Title

Thue equations with composite fields

Authors 1, 2

Affiliations

  1. Forschungsinstitut für Mathematik, ETH-Zentrum, CH-8092 Zürich, Switzerland
  2. Algorithmique Arithmétique Expérimentale (A2X), UMR CNRS 9936, Université Bordeaux 1, 351, cours de la Libération, F-33405 Talence Cedex, France

Bibliography

  1. A. Baker and H. Davenport, The equations 3x² - 2 = y² and 8x² - 7 = z², Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
  2. A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math. 442 (1993), 19-62.
  3. Yu. Bilu, Solving superelliptic Diophantine equations by the method of Gelfond-Baker, preprint 94-09, Mathématiques Stochastiques, Univ. Bordeaux 2, 1994.
  4. Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392.
  5. Yu. Bilu and G. Hanrot, Solving superelliptic Diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312.
  6. Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, submitted.
  7. Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York, 1966.
  8. H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math. 138, Springer, 1993.
  9. G. Hanrot, Résolution effective d'équations diophantiennes: algorithmes et applications, Thèse, Université Bordeaux 1, 1997.
  10. G. Hanrot, Solving Thue equations without the full unit group, Math. Comp., to appear.
  11. A. K. Lenstra, H. W. Lenstra, jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534.
  12. A. Pethő, Computational methods for the resolution of Diophantine equations, in: R. A. Mollin (ed.), Number Theory: Proc. First Conf. Canad. Number Theory Assoc. (Banff, 1988), de Gruyter, 1990, 477-492.
  13. A. Pethő and B. M. M. de Weger, Products of prime powers in binary recurrence sequences, Part I: The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation, Math. Comp. 47 (1987), 713-727.
  14. M. E. Pohst, Computational Algebraic Number Theory, DMV Sem. 21, Birkhäuser, Basel, 1993.
  15. M. E. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989.
  16. N. Smart, The solution of triangularly connected decomposable form equations, Math. Comp. 64 (1995), 819-840.
  17. C. Stewart, Primitive divisors of Lucas and Lehmer numbers, in: Transcendence Theory: Advances and Applications, A. Baker and D. W. Masser (eds.), Academic Press, 1977.
  18. N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.
  19. N. Tzanakis and B. M. M. de Weger, How to explicitly solve a Thue-Mahler equation, Compositio Math. 84 (1992), 223-288.
  20. P. Voutier, Primitive divisors of Lucas and Lehmer sequences, Math. Comp. 64 (1995), 869-888.
  21. B. M. M. de Weger, Solving exponential diophantine equations using lattice basis reduction algorithms, J. Number Theory 26 (1987), 325-367.
Pages:
311-326
Main language of publication
English
Received
1997-04-11
Accepted
1999-01-04
Published
1999
Exact and natural sciences