ArticleOriginal scientific text

Title

Corps de nombres engendrés par un nombre de Salem

Authors 1

Affiliations

  1. Equipe d'Arithmétique, Université P. et M. Curie (Paris 6), Tour 46-56, 5ème étage, Boîte 247, 4 place Jussieu, 75252 Paris Cedex 05, France

Keywords

nombres de Salem, théorie de Galois, polynômes réciproques

Bibliography

  1. [Be] M. J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugo, M. Pathiaux-Delefosse and J. P. Schreiber, Pisot and Salem Numbers, Birkhäuser, Basel, 1992.
  2. [Bo1] D. W. Boyd, Small Salem numbers, Duke Math. J. 44 (1977), 315-327.
  3. [Bo2] D. W. Boyd, Reciprocal polynomials having small measure, Math. Comp. 35 (1980), 1361-1377.
  4. [Bo3] D. W. Boyd, Reciprocal polynomials having small measure 2, Math. Comp. 53 (1989), 355-357, S1-S5.
  5. [Bu] G. Butler and J. McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), 863-911.
  6. [CM] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 2nd ed., Springer, 1965.
  7. [G] K. Girstmair, On the computation of resolvents and Galois groups, Manuscripta Math. 43 (1983), 289-307.
  8. [L] D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. 34 (1933), 461-479.
  9. [M1] M. J. Mossinghoff, Polynomials with small Mahler measure, Math. Comp. 67 (1998), 1697-1705.
  10. [M2] M. J. Mossinghoff, Algorithms for the determination of polynomials with small Mahler measure, Ph.D. thesis, University of Texas at Austin, 1995.
  11. [O] M. Olivier, Corps sextiques primitifs. 4, Sém. Théor. Nombres Bordeaux (2) 3 (1991), no. 2, 381-404.
  12. [P] C. Batut, D. Bernardi, H. Cohen and M. Olivier, User's Guide to PARI-GP, Version 1.39, 1995.
  13. [S] R. P. Stauduhar, The determination of Galois groups, Math. Comp. 27 (1973), 981-996.
Pages:
191-200
Main language of publication
French
Received
1998-07-01
Accepted
1998-09-21
Published
1999
Exact and natural sciences