ArticleOriginal scientific text
Title
Arithmetic progressions of prime-almost-prime twins
Authors 1
Affiliations
- Department of Mathematics, Plovdiv University "P. Hilendarski", "Tsar Asen" 24, Plovdiv 4000, Bulgaria
Bibliography
- Brüdern J., Fouvry E., Lagrange's Four Squares Theorem with almost prime variables, J. Reine Angew. Math. 454 (1994), 59-96.
- Chen J., On the representation of a large even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157-176.
- Davenport H., Multiplicative Number Theory (revised by H. Montgomery), 2nd ed., Springer, 1980.
- Halberstam H., Richert H.-E., Sieve Methods, Academic Press, London, 1974.
- Hardy G. H., Wright E. M., An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
- Heath-Brown D. R., Three primes and an almost-prime in arithmetic progression, J. London Math. Soc. (2) 23 (1981), 396-414.
- Heath-Brown D. R., Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), 1365-1377.
- Iwaniec H., On sums of two norms from cubic fields, in: Journées de théorie additive des nombres, Université de Bordeaux I, 1977, 71-89.
- Iwaniec H., Rosser's sieve, Acta Arith. 36 (1980), 171-202.
- Iwaniec H., A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320.
- Karatsuba A. A., Principles of the Analytic Number Theory, Nauka, Moscow, 1983 (in Russian).
- Maier H., Pomerance C., Unusually large gaps between consecutive primes, Trans. Amer. Math. Soc. 322 (1990), 201-237.
- Peneva T. P., Tolev D. I., An additive problem with primes and almost-primes, Acta Arith. 83 (1998), 155-169.
- Tolev D. I., On the number of representations of an odd integer as a sum of three primes, one of which belongs to an arithmetic progression, Proc. Steklov. Inst. Math. 218 (1997).
- van der Corput J. G., Über Summen von Primzahlen und Primzahlquadraten, Math. Ann. 116 (1939), 1-50.
- Vaughan R. C., The Hardy-Littlewood Method, Cambridge Univ. Press, 1981.
- Vinogradov I. M., Representation of an odd number as a sum of three primes, Dokl. Akad. Nauk SSSR 15 (1937), 169-172 (in Russian).