ArticleOriginal scientific text

Title

Solving elliptic diophantine equations: the general cubic case

Authors 1, 2

Affiliations

  1. Econometric Institute, Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
  2. Sportsingel 30, 2924 XN Krimpen aan den IJssel, The Netherlands

Keywords

cubic diophantine equation, elliptic curve, elliptic logarithm, LLL-reduction, binary Krawtchouk polynomial

Bibliography

  1. [BC70] A. Baker and J. Coates, Integer points on curves of genus 1, Proc. Cambridge Philos. Soc. 67 (1970), 595-602.
  2. [BH96] Yu. Bilu and G. Hanrot, Solving Thue equations of high degree, J. Number Theory 60 (1996), 373-392.
  3. [BH98] Yu. Bilu and G. Hanrot, Solving superelliptic diophantine equations by Baker's method, Compositio Math. 112 (1998), 273-312.
  4. [BST97] A. Bremner, R. J. Stroeker and N. Tzanakis, On sums of consecutive squares, J. Number Theory 62 (1997), 39-70.
  5. [Co97] I. Connell, Elliptic Curve Handbook, available from the ftp site of McGill University in the directory math.mcgill.ca/pub/ECH1. From the same site the Apecs package can be downloaded.
  6. [Cr92] J. E. Cremona, Algorithms for Modular Elliptic Curves, Cambridge Univ. Press, 1992. The programs mrank, mwrank, findinf may be downloaded from John Cremona's ftp site euclid.ex.ac.uk/pub/cremona.
  7. [D95] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. Soc. Math. France (N.S.) 62 (1995), iv + 143 pp.
  8. [GPZ94] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), 171-192.
  9. [GPZ97] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on Mordell's elliptic curves, Collect. Math. 48 (1997), no. 1-2, 115-136.
  10. [HS93] L. Habsieger and D. Stanton, More zeros of Krawtchouk polynomials, Graphs Combin. 9 (1993), 163-172.
  11. [HP98] L. Hajdu and Á. Pintér, Combinatorial diophantine equations, preprint.
  12. [H97] G. Hanrot, Résolution effective d'équations diophantiennes: algorithmes et applications, Thèse, Université Bordeaux 1, 1997.
  13. [KL96] I. Krasikov and S. Litsyn, On integral zeros of Krawtchouk polynomials, J. Combin. Theory Ser. A 74 (1996), 71-99.
  14. [N28] T. Nagel, Sur les propriétés des cubiques planes du premier genre, Acta Math. 52 (1928), 93-126.
  15. [Sch92] W. M. Schmidt, Integer points on curves of genus 1, Compositio Math. 81 (1992), 33-59.
  16. [Sie29] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss. 1929, 1-41.
  17. [Sik95] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), 1501-1538.
  18. [Sil90] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743.
  19. [Sm94] N. P. Smart, S-integral points on elliptic curves, Math. Proc. Cambridge Philos. Soc. 116 (1994), 391-399.
  20. [St95] R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Math. 97 (1995), 295-307.
  21. [ST94] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), 177-196.
  22. [ST97] R. J. Stroeker and N. Tzanakis, On the elliptic logarithm method for elliptic diophantine equations: Reflections and an improvement, Experiment. Math., to appear.
  23. [SdW97] R. J. Stroeker and B. M. M. de Weger, Elliptic binomial diophantine equations, Math. Comp., to appear.
  24. [SdW98] R. J. Stroeker and B. M. M. de Weger, On integral zeroes of binary Krawtchouk polynomials, Proceedings NMC 1998 (Dutch Math. Congress, Twente Un.), to appear.
  25. [Tz96] N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations, Acta Arith. 75 (1996), 165-190.
  26. [TdW89] N. Tzanakis and B. M. M. de Weger, On the practical solution of the Thue equation, J. Number Theory 31 (1989), 99-132.
  27. [dW89] B. M. M. de Weger, Algorithms for Diophantine equations, CWI Tract 65, Stichting Mathematisch Centrum, Amsterdam, 1989.
  28. [Z87] D. Zagier, Large integral points on elliptic curves, Math. Comp.48 (1987), 425-436.
Pages:
339-365
Main language of publication
English
Received
1998-06-10
Published
1999
Exact and natural sciences