ArticleOriginal scientific text
Title
Factorisations explicites de g(y) - h(z)
Authors 1, 2
Affiliations
- Laboratoire de Mathématiques Pures, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France
- Délégation Générale pour l'Armement et Laboratoire d'Algorithmique Arithmétique Expérimentale, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France
Bibliography
- N. M. Adrianov, Classification des groupes cartographiques primitifs des arbres plans, Fundamental'naya i prikladnaya matematika 3, 1997 (en Russe).
- N. M. Adrianov, Yu. Kotchetkov et A. D. Souvorov, Arbres planaires avec des groupes cartographiques exceptionnels, preprint, 1997 (en Russe).
- C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, User's guide to PARI-GP, Université de Bordeaux, 1996.
- G. D. Birkhoff and H. S. Vandiver, On the integral divisors of
, Ann. of Math. 5 (1903), 173-180. - W. Bosma et al., Magma Reference Manual, http://www.maths.usyd.edu.au, 1997.
- W. Burnside, On simply transitive groups of prime degree, Quart. J. Math. 37 (1906), 215-221.
- R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Ginn, Boston, 1937.
- J. W. S. Cassels, Factorization of polynomials in several variables, in: Proc. 15th Scandinavian Congress, Oslo, Lecture Notes in Math. 118, Springer, 1968, 1-17.
- B. W. Char et al., Maple V Language Reference Manual, Springer, 1991.
- C. Chevalley, Thèses, Faculté des sciences de l'Université de Paris, 1934.
- J. Conway et al., Atlas of Finite Groups, Clarendon Press, 1985.
- C. W. Curtis, W. M. Kantor and G. M. Seitz, The 2-transitives permutations representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59.
- H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x)=g(y), Quart. J. Math. Oxford Ser. 12 (1961), 304-312.
- H. Davenport and A. Schinzel, Two problems concerning polynomials, J. Reine Angew. Math. 214 (1964), 386-391.
- P. Dembowski, Finite Geometries, Springer, 1968.
- D. Dixon, The Structure of Linear Groups, Van Nostrand Reinhold, 1971.
- L. Schneps (ed.), The Theory of Grothendieck's Dessins d'Enfant, Cambridge University Press, 1994.
- W. Feit, Automorphisms of symmetric balanced incomplete block designs, Math. Z. 118 (1970), 40-49.
- W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247.
- W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181.
- M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55.
- M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146.
- M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-602.
- M. Hall, Jr., The Theory of Groups, Macmillan, 1959.
- S. Lang, Algebra, Addison-Wesley, 1984.
- P. Müller, Primitive monodromy groups for polynomials, in: Recent Developments in the Inverse Galois Problem, M. Fried (ed.), Contemp. Math. 186, Amer. Math. Soc., 1995, 385-401.
- H. J. Ryser, Combinatorial Mathematics, Wiley, 1963.
- I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen, Preuss. Akad. Wiss. Phys.-Math. Kl. 1933, 598-623.
- J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.
- J. A. Todd, A combinatorial problem, J. Math. Phys. Mass. Inst. Tech. 12 (1933), 321-333.