ArticleOriginal scientific text

Title

Factorisations explicites de g(y) - h(z)

Authors 1, 2

Affiliations

  1. Laboratoire de Mathématiques Pures, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France
  2. Délégation Générale pour l'Armement et Laboratoire d'Algorithmique Arithmétique Expérimentale, Université Bordeaux I, 351 cours de la Libération, 33405 Talence, France

Bibliography

  1. N. M. Adrianov, Classification des groupes cartographiques primitifs des arbres plans, Fundamental'naya i prikladnaya matematika 3, 1997 (en Russe).
  2. N. M. Adrianov, Yu. Kotchetkov et A. D. Souvorov, Arbres planaires avec des groupes cartographiques exceptionnels, preprint, 1997 (en Russe).
  3. C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, User's guide to PARI-GP, Université de Bordeaux, 1996.
  4. G. D. Birkhoff and H. S. Vandiver, On the integral divisors of an-bn, Ann. of Math. 5 (1903), 173-180.
  5. W. Bosma et al., Magma Reference Manual, http://www.maths.usyd.edu.au, 1997.
  6. W. Burnside, On simply transitive groups of prime degree, Quart. J. Math. 37 (1906), 215-221.
  7. R. D. Carmichael, Introduction to the Theory of Groups of Finite Order, Ginn, Boston, 1937.
  8. J. W. S. Cassels, Factorization of polynomials in several variables, in: Proc. 15th Scandinavian Congress, Oslo, Lecture Notes in Math. 118, Springer, 1968, 1-17.
  9. B. W. Char et al., Maple V Language Reference Manual, Springer, 1991.
  10. C. Chevalley, Thèses, Faculté des sciences de l'Université de Paris, 1934.
  11. J. Conway et al., Atlas of Finite Groups, Clarendon Press, 1985.
  12. C. W. Curtis, W. M. Kantor and G. M. Seitz, The 2-transitives permutations representations of the finite Chevalley groups, Trans. Amer. Math. Soc. 218 (1976), 1-59.
  13. H. Davenport, D. J. Lewis and A. Schinzel, Equations of the form f(x)=g(y), Quart. J. Math. Oxford Ser. 12 (1961), 304-312.
  14. H. Davenport and A. Schinzel, Two problems concerning polynomials, J. Reine Angew. Math. 214 (1964), 386-391.
  15. P. Dembowski, Finite Geometries, Springer, 1968.
  16. D. Dixon, The Structure of Linear Groups, Van Nostrand Reinhold, 1971.
  17. L. Schneps (ed.), The Theory of Grothendieck's Dessins d'Enfant, Cambridge University Press, 1994.
  18. W. Feit, Automorphisms of symmetric balanced incomplete block designs, Math. Z. 118 (1970), 40-49.
  19. W. Feit, On symmetric balanced incomplete block designs with doubly transitive automorphism groups, J. Combin. Theory Ser. A 14 (1973), 221-247.
  20. W. Feit, Some consequences of the classification of finite simple groups, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 175-181.
  21. M. Fried, On a conjecture of Schur, Michigan Math. J. 17 (1970), 41-55.
  22. M. Fried, The field of definition of function fields and a problem in the reducibility of polynomials in two variables, Illinois J. Math. 17 (1973), 128-146.
  23. M. Fried, Exposition on an arithmetic-group theoretic connection via Riemann's existence theorem, in: Proc. Sympos. Pure Math. 37, Amer. Math. Soc., 1980, 571-602.
  24. M. Hall, Jr., The Theory of Groups, Macmillan, 1959.
  25. S. Lang, Algebra, Addison-Wesley, 1984.
  26. P. Müller, Primitive monodromy groups for polynomials, in: Recent Developments in the Inverse Galois Problem, M. Fried (ed.), Contemp. Math. 186, Amer. Math. Soc., 1995, 385-401.
  27. H. J. Ryser, Combinatorial Mathematics, Wiley, 1963.
  28. I. Schur, Zur Theorie der einfach transitiven Permutationsgruppen, Preuss. Akad. Wiss. Phys.-Math. Kl. 1933, 598-623.
  29. J. Singer, A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.
  30. J. A. Todd, A combinatorial problem, J. Math. Phys. Mass. Inst. Tech. 12 (1933), 321-333.
Pages:
291-317
Main language of publication
French
Received
1997-05-09
Accepted
1998-08-25
Published
1999
Exact and natural sciences