ArticleOriginal scientific text
Title
A uniform version of Jarník's theorem
Authors 1
Affiliations
- Algorithmique Arithmétique Expérimentale, CNRS UMR 9936, Université Bordeaux I, 351 cours de la Libération, 33405 Talence Cedex, France
Keywords
strictly convex curve, integer points, Farey fractions
Bibliography
- E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), 337-357.
- G. Grekos, Sur le nombre de points entiers d'une courbe convexe, Bull. Sci. Math. (2) 112 (1988), 235-254.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Clarendon Press, Oxford, 1979.
- V. Jarník, Über die Gitterpunkte auf konvexen Kurven, Math. Z. 24 (1926), 500-518.
- H. Niederreiter, The distribution of Farey points, Math. Ann. 201 (1973), 341-345.
- J. Pila, Geometric postulation of a smooth function and the number of rational points, Duke Math. J. 63 (1991), 449-463.
- W. M. Schmidt, Integer points on curves and surfaces, Monatsh. Math. 99 (1985), 45-72.
- H. P. F. Swinnerton-Dyer, The number of lattice points on a convex curve, J. Number Theory 6 (1974), 128-135.
- G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Publication de l'Institut Élie Cartan, Nancy, 1990.
- A. M. Vershik, The limit shape of convex lattice polygons and related topics, Functional Anal. Appl. 28 (1994), 13-20.