ArticleOriginal scientific text
Title
The set of solutions of a polynomial-exponential equation
Authors 1
Affiliations
- Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802-6401, U.S.A.
Bibliography
- J. W. S. Cassels, An Introduction to the Geometry of Numbers, Grundlehren Math. Wiss. 99, Springer, 1959.
- E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
- M. Laurent, Équations diophantiennes exponentielles, Invent. Math. 78 (1984), 299-327.
- M. Laurent, Équations exponentielles-polynômes et suites récurrentes linéaires, II, J. Number Theory 31 (1989), 24-53.
- H. P. Schlickewei, Lower bounds for heights on finitely generated groups, Monatsh. Math. 123 (1997), 171-178.
- H. P. Schlickewei and W. M. Schmidt, On polynomial-exponential equations, Math. Ann. 296 (1993), 339-361.
- H. P. Schlickewei and W. M. Schmidt, The number of solutions of polynomial-exponential equations, Compositio Math., to appear.