ArticleOriginal scientific text

Title

Arithmetic properties of periodic points of quadratic maps, II

Authors 1

Affiliations

  1. Department of Mathematics, Wellesley College, Wellesley, Massachusetts 02481-8203, U.S.A.

Bibliography

  1. [ba] E. Bach, Toward a theory of Pollard's rho method, Inform. and Comput. 90 (1991), 139-155.
  2. [bo] T. Bousch, Sur quelques problèmes de dynamique holomorphe, thèse, Université de Paris-Sud, Centre d'Orsay, 1992.
  3. [de] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1987.
  4. [fps] V. Flynn, B. Poonen and E. Schaefer, Cycles of quadratic polynomials and rational points on a genus 2 curve, Duke Math. J. 90 (1997), 435-463.
  5. [m1] P. Morton, Arithmetic properties of periodic points of quadratic maps, Acta Arith. 62 (1992), 343-372.
  6. [m2] P. Morton, Characterizing cyclic cubic extensions by automorphism polynomials, J. Number Theory 49 (1994), 183-208.
  7. [m3] P. Morton, On certain algebraic curves related to polynomial maps, Compositio Math. 103 (1996), 319-350.
  8. [mp] P. Morton and P. Patel, The Galois theory of periodic points of polynomial maps, Proc. London Math. Soc. 68 (1994), 225-263.
  9. [ms] P. Morton and J. Silverman, Periodic points, multiplicities and dynamical units, J. Reine Angew. Math. 461 (1995), 81-122.
  10. [mv] P. Morton and F. Vivaldi, Bifurcations and discriminants for polynomial maps, Nonlinearity 8 (1995), 571-584.
  11. [rw] P. Russo and R. Walde, Rational periodic points of the quadratic function Qc(x)=x²+c, Amer. Math. Monthly 101 (1994), 318-331.
  12. [tvw] E. Thiran, D. Verstegen and J. Weyers, p-adic dynamics, J. Statist. Phys. 54 (1989), 893-913.
  13. [vh1] F. Vivaldi and S. Hatjispyros, Galois theory of periodic orbits of rational maps, Nonlinearity 5 (1992), 961-978.
  14. [vh2] F. Vivaldi and S. Hatjispyros, A family of rational zeta functions for the quadratic map, Nonlinearity 8 (1995), 321-332.
  15. [w1] L. Washington, A family of cyclic quartic fields arising from modular curves, Math. Comp. 57 (1991), 763-775.
  16. [w2] L. Washington, Introduction to Cyclotomic Fields, Springer, New York, 1982.
Pages:
89-102
Main language of publication
English
Received
1997-04-23
Accepted
1998-02-18
Published
1998
Exact and natural sciences