ArticleOriginal scientific text

Title

Courbes algébriques de genre ≥ 2 possédant de nombreux points rationnels

Authors 1

Affiliations

  1. UFR de mathématiques, Université Paris 7, 2, pl. Jussieu, F-75251 Paris Cedex 05, France

Bibliography

  1. [A-M] A. O. L. Atkin and F. Morain, Finding suitable curves for the Elliptic Curve Method of factorization, Math. Comp. 60 (1993), 399-405.
  2. [CHM1] L. Caporaso, J. Harris and B. Mazur, Uniformity of rational points, J. Amer. Math. Soc. 10 (1997), 1-35.
  3. [CHM2] L. Caporaso, J. Harris and B. Mazur, How many rational points can a curve have?, dans: The Moduli Space of Curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser, 1995, 13-31.
  4. [C-F] J. W. S. Cassels and E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, London Math. Soc. Lecture Note Ser. 230, Cambridge Univ. Press, 1996.
  5. [Dix] J. Dixmier, On the projective invariant of quartic plane curves, Adv. Math. 64 (1987), 279-304.
  6. [EGH] D. Eisenbud, M. Green and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295-324.
  7. [Elk1] N. Elkies, Curves with many points, preprint, 1995.
  8. [Elk2] N. Elkies, Communication personnelle, 1997.
  9. [K-K] W. Keller et L. Kulesz, Courbes algébriques de genre 2 et 3 possédant de nombreux points rationnels, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1469-1472.
  10. [Kul] L. Kulesz, Courbes algébriques de genre 2 possédant de nombreux points rationnels, ibid., 91-94.
  11. [Lep] F. Leprévost, Familles de courbes hyperelliptiques, dans : Séminaire de Théorie des nombres, Paris, 1991-1992, S. David (ed.), Progr. Math. 116, Birkhäuser, 1993, 107-119.
  12. [Maz] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-169.
  13. [Mes] J.-F. Mestre, Construction explicite de courbes de genre 2 à partir de leurs modules, dans : Effective Methods in Algebraic Geometry, Progr. Math. 94, Birkhäuser, 1991, 313-334.
  14. [Sta] C. Stahlke, Algebraic curves over Q with many rational points and minimal automorphism group, Internat. Math. Res. Notices 1997, no. 1, 1-4.
  15. [Suy] H. Suyama, Informal preliminary report (8), 1985.
  16. [Vel] J. Vélu, Isogénies entre courbes elliptiques, C. R. Acad. Sci. Paris Sér. A 273 (1971), 238-241.
Pages:
103-120
Main language of publication
French
Received
1997-10-27
Accepted
1998-03-31
Published
1998
Exact and natural sciences