ArticleOriginal scientific textFitting ideals of class groups in a
Title
Fitting ideals of class groups in a -extension
Authors 1
Affiliations
- Corso XXV Aprile 60, 14100 Asti, Italy
Bibliography
- N. Bourbaki, Algebra I, Springer, New York, 1989.
- J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
- P. Cornacchia, Anderson's module for cyclotomic fields of prime conductor, J. Number Theory 67 (1997), 252-276.
- P. Cornacchia and C. Greither, Fitting ideals of class groups of real fields of prime power conductor, J. Number Theory, to appear.
- M. Grandet et J.-F. Jaulent, Sur la capitulation dans une
-extension, J. Reine Angew. Math. 362 (1985), 213-217. - R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- C. Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449-499.
- C. Greither, The structure of some minus class groups, and Chinburg's third conjecture for abelian fields, Math. Z., to appear.
- K. Iwasawa, On
-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326. - J. M. Kim, S. Bae and I.-S. Lee, Cyclotomic units in
-extensions, Israel J. Math. 75 (1991), 161-165. - J. S. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), 135-155.
- L. V. Kuz'min, On formulae for the class number of real Abelian fields, Russian Acad. Sci. Izv. Math. 60 (1996), 695-761.
- S. Lang, Cyclotomic Fields I and II, combined 2nd ed., Grad. Texts in Math. 121, Springer, New York, 1990.
- B. Mazur and A. Wiles, Class fields of abelian extensions of ℚ, Invent. Math. 76 (1984), 179-330.
- M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field, J. Number Theory 64 (1997), 211-222.
- M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field II, J. Number Theory., 223-232.
- K. Rubin, The Main Conjecture, Appendix to [13].
- R. Schoof, The structure of the minus class groups of abelian number fields, in: Séminaire de Théorie des Nombres, Paris 1988-89, Progr. Math. 91, Birkhäuser, 1991, 185-204.
- W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234.
- L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math. 83, Springer, New York, 1997.