ArticleOriginal scientific text

Title

Fitting ideals of class groups in a p-extension

Authors 1

Affiliations

  1. Corso XXV Aprile 60, 14100 Asti, Italy

Bibliography

  1. N. Bourbaki, Algebra I, Springer, New York, 1989.
  2. J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
  3. P. Cornacchia, Anderson's module for cyclotomic fields of prime conductor, J. Number Theory 67 (1997), 252-276.
  4. P. Cornacchia and C. Greither, Fitting ideals of class groups of real fields of prime power conductor, J. Number Theory, to appear.
  5. M. Grandet et J.-F. Jaulent, Sur la capitulation dans une l-extension, J. Reine Angew. Math. 362 (1985), 213-217.
  6. R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
  7. C. Greither, Class groups of abelian fields, and the main conjecture, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 449-499.
  8. C. Greither, The structure of some minus class groups, and Chinburg's third conjecture for abelian fields, Math. Z., to appear.
  9. K. Iwasawa, On l-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246-326.
  10. J. M. Kim, S. Bae and I.-S. Lee, Cyclotomic units in p-extensions, Israel J. Math. 75 (1991), 161-165.
  11. J. S. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), 135-155.
  12. L. V. Kuz'min, On formulae for the class number of real Abelian fields, Russian Acad. Sci. Izv. Math. 60 (1996), 695-761.
  13. S. Lang, Cyclotomic Fields I and II, combined 2nd ed., Grad. Texts in Math. 121, Springer, New York, 1990.
  14. B. Mazur and A. Wiles, Class fields of abelian extensions of ℚ, Invent. Math. 76 (1984), 179-330.
  15. M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field, J. Number Theory 64 (1997), 211-222.
  16. M. Ozaki, On the cyclotomic unit group and the ideal class group of a real abelian number field II, J. Number Theory., 223-232.
  17. K. Rubin, The Main Conjecture, Appendix to [13].
  18. R. Schoof, The structure of the minus class groups of abelian number fields, in: Séminaire de Théorie des Nombres, Paris 1988-89, Progr. Math. 91, Birkhäuser, 1991, 185-204.
  19. W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980), 181-234.
  20. L. C. Washington, Introduction to Cyclotomic Fields, 2nd ed., Grad. Texts in Math. 83, Springer, New York, 1997.
Pages:
79-88
Main language of publication
English
Received
1998-01-27
Published
1998
Exact and natural sciences