Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1998 | 86 | 3 | 277-288

Tytuł artykułu

Global function fields with many rational places over the quinary field. II

Treść / Zawartość

Języki publikacji

EN

Twórcy

  • Institut für Informationsverarbeitung, Österreichische Akademie der Wissenschaften, Sonnenfelsgasse 19, A-1010 Wien, Austria
  • Department of Information Systems and Computer Science, The National University of Singapore, Lower Kent Ridge Road, Singapore 119260

Bibliografia

  • [1] A. Garcia and H. Stichtenoth, Algebraic function fields over finite fields with many rational places, IEEE Trans. Inform. Theory 41 (1995), 1548-1563.
  • [2] D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996.
  • [3] D. R. Hayes, Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91.
  • [4] D. R. Hayes, A brief introduction to Drinfeld modules, in: The Arithmetic of Function Fields, D. Goss, D. R. Hayes, and M. I. Rosen (eds.), de Gruyter, Berlin, 1992, 1-32.
  • [5] H. Niederreiter and C. P. Xing, Quasirandom points and global function fields, in: Finite Fields and Applications, S. Cohen and H. Niederreiter (eds.), Cambridge Univ. Press, Cambridge, 1996, 269-296.
  • [6] H. Niederreiter and C. P. Xing, Cyclotomic function fields, Hilbert class fields, and global function fields with many rational places, Acta Arith. 79 (1997), 59-76.
  • [7] H. Niederreiter and C. P. Xing, Drinfeld modules of rank 1 and algebraic curves with many rational points. II, Acta Arith. 81 (1997), 81-100.
  • [8] H. Niederreiter and C. P. Xing, Global function fields with many rational places over the quinary field, Demonstratio Math. 30 (1997), 919-930.
  • [9] H. Niederreiter and C. P. Xing, The algebraic-geometry approach to low-discrepancy sequences, in: Monte Carlo and Quasi-Monte Carlo Methods 1996, H. Niederreiter et al. (eds.), Lecture Notes in Statist. 127, Springer, New York, 1998, 139-160.
  • [10] H. Niederreiter and C. P. Xing, Algebraic curves over finite fields with many rational points, in: Number Theory, K. Győry, A. Pethő, and V. T. Sós (eds.), de Gruyter, Berlin, 1998, 423-443.
  • [11] H. Niederreiter and C. P. Xing, Global function fields with many rational places and their applications, in: Proc. Finite Fields Conf. (Waterloo, 1997), Contemp. Math., Amer. Math. Soc., Providence, to appear.
  • [12] H. Niederreiter and C. P. Xing, Nets, (t,s)-sequences, and algebraic geometry, in: Pseudo- and Quasi- Random Point Sets, P. Hellekalek and G. Larcher (eds.), Lecture Notes in Statist., Springer, New York, to appear.
  • [13] O. Pretzel, Codes and Algebraic Curves, Oxford Univ. Press, Oxford, 1998.
  • [14] M. Rosen, The Hilbert class field in function fields, Exposition. Math. 5 (1987), 365-378.
  • [15] J.-P. Serre, Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 397-402.
  • [16] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1993.
  • [17] G. van der Geer and M. van der Vlugt, How to construct curves over finite fields with many points, in: Arithmetic Geometry, F. Catanese (ed.), Cambridge Univ. Press, Cambridge, 1997, 169-189.
  • [18] C. P. Xing and H. Niederreiter, Modules de Drinfeld et courbes algébriques ayant beaucoup de points rationnels, C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), 651-654.
  • [19] C. P. Xing and H. Niederreiter, Drinfeld modules of rank 1 and algebraic curves with many rational points, Monatsh. Math., to appear.

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-aav86i3p277bwm