ArticleOriginal scientific text

Title

Hyper-Kloosterman sums and estimation of exponential sums of polynomials of higher degrees

Authors 1

Affiliations

  1. Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419, U.S.A.

Bibliography

  1. L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J. 24 (1957), 37-41.
  2. R. Dąbrowski and B. Fisher, A stationary phase formula for exponential sums over pm and applications to GL(3)-Kloosterman sums, Acta Arith. 80 (1997), 1-48.
  3. H. Davenport und H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
  4. P. Deligne, Applications de la formule des traces aux sommes trigonométriques, in: Cohomologie Etale (SGA 4 1/2), Lecture Notes in Math. 569, Springer, Berlin, 1977, 168-232.
  5. L. K. Hua, On exponential sums, J. Chinese Math. Soc. 2 (1940), 301-312.
  6. N. M. Katz, Sommes exponentielles, Astérisque 79 (1980).
  7. N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton Univ. Press, Princeton, 1988.
  8. N. M. Katz, Exponential Sums and Differential Equations, Ann. of Math. Stud. 124, Princeton Univ. Press, Princeton, 1990.
  9. J. H. Loxton and R. A. Smith, On Hua's estimate for exponential sums, J. London Math. Soc. 26 (1982), 15-20.
  10. J. H. Loxton and R. C. Vaughan, The estimation of complete exponential sums, Canad. Math. Bull. 28 (1985), 440-454.
  11. R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge Univ. Press, Cambridge, 1997.
  12. Y. Ye, The lifting of an exponential sum to a cyclic algebraic number field of a prime degree, Trans. Amer. Math. Soc., to appear.
Pages:
255-267
Main language of publication
English
Received
1998-02-14
Published
1998
Exact and natural sciences