ArticleOriginal scientific text
Title
Hyper-Kloosterman sums and estimation of exponential sums of polynomials of higher degrees
Authors 1
Affiliations
- Department of Mathematics, The University of Iowa, Iowa City, Iowa 52242-1419, U.S.A.
Bibliography
- L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J. 24 (1957), 37-41.
- R. Dąbrowski and B. Fisher, A stationary phase formula for exponential sums over
and applications to GL(3)-Kloosterman sums, Acta Arith. 80 (1997), 1-48. - H. Davenport und H. Hasse, Die Nullstellen der Kongruenzzetafunktionen in gewissen zyklischen Fällen, J. Reine Angew. Math. 172 (1935), 151-182.
- P. Deligne, Applications de la formule des traces aux sommes trigonométriques, in: Cohomologie Etale (SGA 4 1/2), Lecture Notes in Math. 569, Springer, Berlin, 1977, 168-232.
- L. K. Hua, On exponential sums, J. Chinese Math. Soc. 2 (1940), 301-312.
- N. M. Katz, Sommes exponentielles, Astérisque 79 (1980).
- N. M. Katz, Gauss Sums, Kloosterman Sums, and Monodromy Groups, Ann. of Math. Stud. 116, Princeton Univ. Press, Princeton, 1988.
- N. M. Katz, Exponential Sums and Differential Equations, Ann. of Math. Stud. 124, Princeton Univ. Press, Princeton, 1990.
- J. H. Loxton and R. A. Smith, On Hua's estimate for exponential sums, J. London Math. Soc. 26 (1982), 15-20.
- J. H. Loxton and R. C. Vaughan, The estimation of complete exponential sums, Canad. Math. Bull. 28 (1985), 440-454.
- R. C. Vaughan, The Hardy-Littlewood Method, 2nd ed., Cambridge Tracts in Math. 125, Cambridge Univ. Press, Cambridge, 1997.
- Y. Ye, The lifting of an exponential sum to a cyclic algebraic number field of a prime degree, Trans. Amer. Math. Soc., to appear.