ArticleOriginal scientific text

Title

Growth of the product n_{j=1}(1-xaj)

Authors 1, 2, 3

Affiliations

  1. Pure Mathematics Student, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
  2. Department of Mathematics and Statistics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
  3. Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Abstract

We estimate the maximum of n_{j=1}|1-xaj| on the unit circle where 1 ≤ a₁ ≤ a₂ ≤ ... is a sequence of integers. We show that when aj is jk or when aj is a quadratic in j that takes on positive integer values, the maximum grows as exp(cn), where c is a positive constant. This complements results of Sudler and Wright that show exponential growth when aj is j.    In contrast we show, under fairly general conditions, that the maximum is less than 2nnr, where r is an arbitrary positive number. One consequence is that the number of partitions of m with an even number of parts chosen from a,...,an is asymptotically equal to the number of such partitions with an odd number of parts when ai satisfies these general conditions.

Bibliography

  1. F. V. Atkinson, On a problem of Erdős and Szekeres, Canad. Math. Bull. 4 (1961), 7-12.
  2. A. S. Belov and S. V. Konyagin, On estimates for the constant term of a nonnegative trigonometric polynomial with integral coefficients, Mat. Zametki 59 (1996), 627-629 (in Russian).
  3. P. Borwein, Some restricted partition functions, J. Number Theory 45 (1993), 228-240.
  4. P. Borwein and C. Ingalls, The Prouhet, Tarry, Escott problem, Enseign. Math. 40 (1994), 3-27.
  5. H. Davenport, Multiplicative Number Theory, 2nd ed., Springer, 1980.
  6. E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
  7. P. Erdős, Problems and results on diophantine approximation, in: Asymptotic Distribution Modulo 1, J. F. Koksma and L. Kuipers (eds.), Noordhoff, 1962.
  8. P. Erdős and G. Szekeres, On the product n_{k=1}(1-za_k), Publ. Inst. Math. (Beograd) 13 (1959), 29-34.
  9. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford, 1979.
  10. M. N. Kolountzakis, On nonnegative cosine polynomials with nonnegative integral coefficients, Proc. Amer. Math. Soc. 120 (1994), 157-163.
  11. R. Maltby, Root systems and the Erdős-Szekeres Problem, Acta Arith. 81 (1997), 229-245.
  12. A. M. Odlyzko, Minima of cosine sums and maxima of polynomials on the unit circle, J. London Math. Soc. (2) 26 (1982), 412-420.
  13. A. M. Odlyzko and L. B. Richmond, On the unimodality of some partition polynomials, European J. Combin. 3 (1982), 69-84.
  14. K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Quart. J. Math. Oxford Ser. (2) 5 (1954), 241-259.
  15. C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83-86.
  16. C. Sudler, An estimate for a restricted partition function, Quart. J. Math. Oxford Ser. (2) 15 (1964), 1-10.
  17. E. M. Wright, Proof of a conjecture of Sudler, Quart. J. Math. Oxford Ser., 11-15.
  18. E. M. Wright, A closer estimation for a restricted partition function, Quart. J. Math. Oxford Ser., 283-287.
Pages:
155-170
Main language of publication
English
Received
1997-08-19
Accepted
1998-02-20
Published
1998
Exact and natural sciences